matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenGrosskreise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Grosskreise
Grosskreise < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grosskreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Mo 18.05.2009
Autor: kushkush

Aufgabe
5. Gegeben seien zwei Punkte A(6/1/2) und B(2/5/6) sowie die Gerade g durch die Gleichung $ g: [mm] \overrightarrow{x}= \vektor{6\\3\\2}+t\cdot \vektor{1\\3\\0}$ [/mm]
a) die Kugel k gehe durch A und B, ihr Mittelpunkt M liege auf g. Bestimme Radius und Mittelpunkt von k.
b) Um welche Gerade a durch M muss man die Kugel k drehen, damit A auf der Bahn eines Grosskreises in B übergeht.Welche Weglänge legt A dabei zurück?  

Hi,

a) Mittelpunkt ist (8,9,2) KG also [mm] (x-8)^{2}+(y-9)^{2}+(z-2)^{2}=68 [/mm]
[mm] R=\sqrt{68} [/mm]

b) Ein Grosskreis auf einer Kugel ist zbsp. der Äquator und halt alle möglichen grössten Kreise? Ich müsste also eine Gerade finden, die den Grosskreis tangiert. Ich weiss allerdings nicht, wie man eine Tangente und einen Grosskreis vektoriell ausdrückt... wie macht man das?  Die Weglänge würde man ja mit der Entfernung der 2 Durchstosspunkte berechnen können (soblald man die Gerade kennen würde...)...

Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
Grosskreise: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mo 18.05.2009
Autor: leduart

Hallo
Der Grosskreis durch A und B ist ein kreis mit dem Kugelradius, der durch A und B liegt. er liegt also in der Ebene von A,B,M, die Achse muss durch M und senkrecht auf der Ebene stehen.
Hilft das?
Gruss leduart

Bezug
                
Bezug
Grosskreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Mo 18.05.2009
Autor: kushkush

hi und danke leduart,


also könnte ich eine Ebene aufspannen durch A,B,M ; dann den Normalenvektor als Richtungsvektor für die Achse nehmen... Der Ortsvektor wäre dann der Mittelpunkt (8/9/2). Für die Distanz müsste ich dann aber auch noch über den Winkel gehen...  Ich werde morgen meine Rechnung posten

gute nacht

Bezug
                
Bezug
Grosskreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Di 19.05.2009
Autor: kushkush

Ich komme auf die Gerade:$ [mm] \vektor{8\\9\\2}+t\cdot \vektor{-4\\1\\-5} [/mm] $? Doch wie rechne ich nun den Winkel aus den ich benötige um die Strecke zu berechnen?

Bezug
                        
Bezug
Grosskreise: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Di 19.05.2009
Autor: MathePower

Hallo kushkush,

> Ich komme auf die Gerade:[mm] \vektor{8\\9\\2}+t\cdot \vektor{-4\\1\\-5} [/mm]?


[ok]


> Doch wie rechne ich nun den Winkel aus den ich benötige um
> die Strecke zu berechnen?  

A bewegt sich auf dem Großkreis auf B zu, der Großkreis hat den Mittelpunkt M.

Demnach mußt Du den Winkel zwischen den Vektoren [mm]\overrightarrow{MA}[/mm] und [mm]\overrightarrow{MB}[/mm] berechnen.


Gruß
MathePower

Bezug
                                
Bezug
Grosskreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Di 19.05.2009
Autor: kushkush

Hi und danke Mathepower,


ich habe für die Distanz 7.15 erhalten!

Bezug
                        
Bezug
Grosskreise: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Di 19.05.2009
Autor: leduart

Hallo
der Winkel zwischen MA und MB ist der um den gedreht wird,

Gruss leduart

Bezug
        
Bezug
Grosskreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Di 19.05.2009
Autor: kushkush

Aufgabe
5. Gegeben seien zwei Punkte A(6/1/2) und B(2/5/6) sowie die Gerade g durch die Gleichung $ g: [mm] \overrightarrow{x}= \vektor{6\\3\\2}+t\cdot \vektor{1\\3\\0}$ [/mm]
a) die Kugel k gehe durch A und B, ihr Mittelpunkt M liege auf g. Bestimme Radius und Mittelpunkt von k.
b) Um welche Gerade a durch M muss man die Kugel k drehen, damit A auf der Bahn eines Grosskreises in B übergeht.Welche Weglänge legt A dabei zurück?


c) Von A verlaufe ein Lichtstrahl im Innern der Kugel nach B und werde dort an der Kugelfläche reflektiert. Wo trifft der reflektierte Strahl erneut auf die Kugelfläche?

Ich glaube ich müsste hier die Tangentenebene zum Durchstosspunkt nehmen und dessen Normalenvektor wäre dann gerade der "reflektierte" Strahl bzw. dessen Durchstosspunkt wäre der 2.te Auftreffpunkt?

Nur: wie drücke ich eine Tangentenebene aus?


Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

Bezug
                
Bezug
Grosskreise: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Di 19.05.2009
Autor: MathePower

Hallo kushkush,

> 5. Gegeben seien zwei Punkte A(6/1/2) und B(2/5/6) sowie
> die Gerade g durch die Gleichung [mm]g: \overrightarrow{x}= \vektor{6\\3\\2}+t\cdot \vektor{1\\3\\0}[/mm]
>  
> a) die Kugel k gehe durch A und B, ihr Mittelpunkt M liege
> auf g. Bestimme Radius und Mittelpunkt von k.
>  b) Um welche Gerade a durch M muss man die Kugel k drehen,
> damit A auf der Bahn eines Grosskreises in B
> übergeht.Welche Weglänge legt A dabei zurück?
>
>
> c) Von A verlaufe ein Lichtstrahl im Innern der Kugel nach
> B und werde dort an der Kugelfläche reflektiert. Wo trifft
> der reflektierte Strahl erneut auf die Kugelfläche?
>  Ich glaube ich müsste hier die Tangentenebene zum
> Durchstosspunkt nehmen und dessen Normalenvektor wäre dann
> gerade der "reflektierte" Strahl bzw. dessen
> Durchstosspunkt wäre der 2.te Auftreffpunkt?
>
> Nur: wie drücke ich eine Tangentenebene aus?
>


Der Punkt B liegt auf der Ebene.
Desweiteren ist der Normalenvektor der Ebene ist durch den
Vektor von A nach B gegegen.

Demnach [mm]E:\left(\overrightarrow{x}-\overrightarrow{OB}\right) \* \overrightarrow{AB}=0[/mm]

Wenn Du die Tangentialebene benötigst, dann ist der Normalemvektor
durch den Vektor von M nach B gegeben.

Demnach [mm]F:\left(\overrightarrow{x}-\overrightarrow{OB}\right) \* \overrightarrow{MB}=0[/mm]


>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]