matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGrößenordnung f(n)=n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Größenordnung f(n)=n
Größenordnung f(n)=n < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Größenordnung f(n)=n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 So 15.05.2016
Autor: Trikolon

Hallo,

ich hätte eine Frage bzgl der durchschnittlichen Größenordnung der zahlentheoretischen Funktion f: [mm] \IN \to \IN [/mm]  f(n)=n (Identitätsfunktion). Wie kann ich diese bestimmen/herleiten? Bei der Funktion d(n) (Teileranzahlfunktion) ist es ja z.b g(n)=log(n)

        
Bezug
Größenordnung f(n)=n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Mo 16.05.2016
Autor: Trikolon

Hat niemand eine Idee hierzu?

Bezug
        
Bezug
Größenordnung f(n)=n: wozu ?
Status: (Antwort) fertig Status 
Datum: 22:58 Mo 16.05.2016
Autor: Al-Chwarizmi


> Hallo,
>  
> ich hätte eine Frage bzgl der durchschnittlichen
> Größenordnung der zahlentheoretischen Funktion f: [mm]\IN \to \IN[/mm]
>  f(n)=n (Identitätsfunktion). Wie kann ich diese
> bestimmen/herleiten? Bei der Funktion d(n)
> (Teileranzahlfunktion) ist es ja z.b g(n)=log(n)


Guten Abend

die Frage scheint mir ziemlich seltsam, da es hier ja
gar nicht nötig ist, auf künstliche Weise eine ungefähre
oder durchschnittliche "Größenordnung" anzugeben, da
ja unmittelbar und sogar ohne jegliche Rechnung der
exakte Funktionswert für jedes beliebige Argument
sofort feststeht:  eben der x-Wert selber !

Mit deinen Bezeichnungen ist für die Funktion f mit f(n)=n
offensichtlich auch g(n)=n

LG  ,   Al-Chw.




Bezug
                
Bezug
Größenordnung f(n)=n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Di 17.05.2016
Autor: Trikolon

Naja, per Definition ist ja die Mittelwertfunktion von einer zahlentheoretischen Fkt f gegeben durch
[mm] \bruch{1}{N}\summe_{n=1}^{N}f(n). [/mm] Im Fall von f(n)=n ergibt sich dann ja [mm] \bruch{N+1}{2}. [/mm] Ich frage mich halt, was man mit der alternativen Definition über die Integralrechnung (wie im eingangs geschilderten Fall) als Ergebnis erhält.



Bezug
                        
Bezug
Größenordnung f(n)=n: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Di 17.05.2016
Autor: fred97


> Naja, per Definition ist ja die Mittelwertfunktion von
> einer zahlentheoretischen Fkt f gegeben durch
>  [mm]\bruch{1}{N}\summe_{n=1}^{N}f(n).[/mm] Im Fall von f(n)=n
> ergibt sich dann ja [mm]\bruch{N+1}{2}.[/mm] Ich frage mich halt,
> was man mit der alternativen Definition über die
> Integralrechnung


???  Wie schaut denn diese Definition aus ?


>  (wie im eingangs geschilderten Fall)

Da sehe ich nichts von dieser Art.

FRED

> als
> Ergebnis erhält.
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]