matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGröbnerbasis reduzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Gröbnerbasis reduzieren
Gröbnerbasis reduzieren < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gröbnerbasis reduzieren: Verständnis
Status: (Frage) überfällig Status 
Datum: 19:52 Mi 21.11.2012
Autor: tagg

Hallo,

auch hier möchte ich lediglich eine kleine Verständnisfrage stellen:

Es geht um Gröbnerbasen. Nehmen wir an, wir haben durch den Buchberger-Algorithmus mit der Startbasis

[mm] f:=x^{2}y^{2}-x^{2}y+x, g=x^{2}y+y^{2} [/mm]

als Input mit der Lexikografischen Termordnung die folgende Gröbnerbasis berechnet (laut Vorlesungsskript)

$ { f, g, [mm] x-y^{3}+y^{2}, y^{8}-2^{7}+y^{6}+y^{3}, y^{7}-2y^{6}+y^{5}+y^{2} [/mm] } $

Wenn wir uns jetzt die Leitterme ansehen, so folgt:

$ { [mm] x-y^{3}+y^{2}, y^{7}-2y^{6}+y^{5}+y^{2} [/mm] } $ ist eine reduzierte Basis.

Meine Frage:
Wieso ist das so? Das Vorlesungsskript geht ausführlich darauf ein, dass wenn für Gröbnerbasiselemente [mm] g_{i} [/mm] und [mm] g_{j} [/mm] mit [mm] g_{i}|g_{j} [/mm] gilt, dass man [mm] g_{j} [/mm] einfach weglassen kann (da dieses Element ja offenbar von [mm] g_{i} [/mm] erzeugt wird).
Warum aber reicht es für das Reduzieren meiner Gröbnerbasis (also das Weglassen von unnötigen Basiselementen) aus, dass ich mir lediglich die Leitterme anschaue?
Wenn das gilt, ist es ja klar: $ [mm] lt(x-y^{3}+y^{2})=x [/mm] $ erzeugt alles, was mit x zu tun hat und [mm] y^{7}-2y^{6}+y^{5}+y^{2} [/mm] ist das Polynom kleinsten Grades, das nur mit y zu tun hat, erzeugt also alles mit y.
Was ist aber mit den Nicht-Leittermen? Werden die dann auch von diesen lediglich zweien Basiselementen irgendwie erzeugt? Kann ich mir iwie nicht vorstellen...

Danke für eure Hilfe!

        
Bezug
Gröbnerbasis reduzieren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 23.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Gröbnerbasis reduzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 So 25.11.2012
Autor: felixf

Moin!

> auch hier möchte ich lediglich eine kleine
> Verständnisfrage stellen:
>  
> Es geht um Gröbnerbasen. Nehmen wir an, wir haben durch
> den Buchberger-Algorithmus mit der Startbasis
>  
> [mm]f:=x^{2}y^{2}-x^{2}y+x, g=x^{2}y+y^{2}[/mm]
>  
> als Input mit der Lexikografischen Termordnung die folgende
> Gröbnerbasis berechnet (laut Vorlesungsskript)
>  
> [mm]{ f, g, x-y^{3}+y^{2}, y^{8}-2^{7}+y^{6}+y^{3}, y^{7}-2y^{6}+y^{5}+y^{2} }[/mm]
>  
> Wenn wir uns jetzt die Leitterme ansehen, so folgt:
>  
> [mm]{ x-y^{3}+y^{2}, y^{7}-2y^{6}+y^{5}+y^{2} }[/mm] ist eine
> reduzierte Basis.
>
> Meine Frage:
> Wieso ist das so? Das Vorlesungsskript geht ausführlich
> darauf ein, dass wenn für Gröbnerbasiselemente [mm]g_{i}[/mm] und
> [mm]g_{j}[/mm] mit [mm]g_{i}|g_{j}[/mm] gilt, dass man [mm]g_{j}[/mm] einfach
> weglassen kann (da dieses Element ja offenbar von [mm]g_{i}[/mm]
> erzeugt wird).

Jo, das ist klar. Bei Groebnerbasen ist es aber auch so, dass aus [mm] $LT(g_i) \mid LT(g_j)$ [/mm] schon folgt, dass man [mm] $g_j$ [/mm] weglassen kann.

> Warum aber reicht es für das Reduzieren meiner
> Gröbnerbasis (also das Weglassen von unnötigen
> Basiselementen) aus, dass ich mir lediglich die Leitterme
> anschaue?

Wenn du die Funktionsweise des Reduktionsalgorithmusses anschaust, und den auf [mm] $g_1, \dots, g_n$ [/mm] anwendest, dann kannst du zuerst [mm] $g_j$ [/mm] mit [mm] $g_i$ [/mm] reduzieren. Bei dem Rest, der bleibt, kannst du nie mit [mm] $g_j$ [/mm] selber reduzieren. Du hast also als Ergebnis [mm] $g_j [/mm] = [mm] \sum_{i=1 \atop i \neq j}^n f_i g_i$ [/mm] mit Polynomen [mm] $f_i \in [/mm] K[X]$, und [mm] $(g_1, \dots, g_n) [/mm] = [mm] (g_1, \dots, g_{j-1}, g_{j+1}, \dots, g_n)$. [/mm] Damit kannst du [mm] $g_j$ [/mm] weglassen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]