matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenGrenzwertverhalten&allg.Frage
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Grenzwertverhalten&allg.Frage
Grenzwertverhalten&allg.Frage < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertverhalten&allg.Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Do 04.05.2006
Autor: Opal

Aufgabe
Grenzwertverhalten für:
f(x) = (-2 [mm] x^{2} [/mm] + x + 1) [mm] e^{x} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Es geht um das Grenzwertverhalten:

(1)Für + unendlich
lim (-2 [mm] x^{2} [/mm] + x + 1) [mm] e^{x} [/mm]   = - unendlich

(2)Für - unendlich
lim (-2 [mm] x^{2} [/mm] + x + 1) [mm] e^{x} [/mm]   = 0-

Meine Frage:
Wieso kommt bei (2) 0- heraus?

Mein Ansatz:
Bei (1) geht die Funktion ja zuerst ins - unendliche, bei [mm] e^x [/mm] dann gegen + unendlich ...
Bei (2) zuerst gegen - unendlich und bei [mm] e^x [/mm] gegen 0+: wieso?

Und da habe ich auch noch eine allgemeine Frage:
Bei Extremstellenbestimmungen sagt man ja immer, dass [mm] e^x [/mm] eine leere Menge sei- wieso?
Weil sie unendlich groß sei vielleicht?!?

Ihr würdet mir wirklich sehr helfen!!!! Danke!

        
Bezug
Grenzwertverhalten&allg.Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Do 04.05.2006
Autor: Seppel

Hallo!

Zu deiner ersten Frage:

Wir haben:
[mm] $\limes_{x\rightarrow-\infty}(-2x^2+x+1)*e^x$ [/mm]

Um nun den Grenzwert bestimmen zu können, bringen wir den Grenzwertprozess in eine Form, die uns bekannt ist (ich setze mal voraus, dass euch diese Form bekannt ist).
Wir substituieren: $x=-z$

Dadurch erhalten wir

[mm] $\limes_{z\rightarrow\infty}(-2(-z)^2+(-z)+1)*e^{-z}$ [/mm]

Das können wir in folgende Form bringen:

[mm] $\limes_{z\rightarrow\infty}\bruch{(-2z^2-z+1)}{e^z}$ [/mm]

Hier sieht man nun, dass der Grenzwert 0 ist.

Zu der Frage der Extrema bei [mm] $e^x$ [/mm] ist zu sagen, dass die Ableitung ebenfalls [mm] $e^x$ [/mm] ist, [mm] $e^x$ [/mm] ist definitionsgemäß nie 0, weshalb sie auch keine kritischen Stellen besitzt.

Gruß Seppel



Bezug
                
Bezug
Grenzwertverhalten&allg.Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Do 04.05.2006
Autor: Opal

Also mir ist diese Form nicht bekannt. Wir sind immer so vorgegangen; bei - unendlich einfach eine große (negative) Zahl einsetzen und gucken was herauskommt. Da man das ja zweimal machen muss, einmal für plus und minus unendlich, kam ich da ein wenig durcheinander, wo nun genau 0 -/+ herauskommt. Oh je :-(  

Bezug
                        
Bezug
Grenzwertverhalten&allg.Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Do 04.05.2006
Autor: Seppel

Hallo nochmal! ;)

Es ist nicht gerade die feine mathematische Art, wenn man so vorgeht, wie ihr das im Unterricht macht. Dafür kannst du natürlich nichts, sondern dein/e Lehrer/in.

Damit du es aber verstehst, gehen wir einfach mal so vor, wie du das erklärt hast. Wir setzen also einen Wert ein - bei dem Grenzwertprozess für x gegen minus unendlich also einen großen negativen Wert.
Die Zahl, die wir einsetzen, nennen wir $g$. Indem wir $-g$ schreiben, wird die Zahl $g$ negativ.

Nach dem Einsetzen, sieht das wie folgt aus:

[mm] $(-2(-g)^2-g+1)*e^{-g}$ [/mm]

Du kennst sicher folgende Definition

[mm] $x^{-1}:=\frac{1}{x}$. [/mm]

Also ergibt sich für unseren Fall

[mm] $(-2(-g)^2-g+1)*\frac{1}{e^g}$ [/mm]
[mm] $\frac{-2(-g)^2-g+1}{e^g}$ [/mm]
[mm] $\frac{-2g^2-g+1}{e^g}$ [/mm]

Betrachten wir diesen Bruch einmal.

[mm] $g^2$ [/mm]  wird mit $(-2)$ multipliziert und wird dadurch negativ. Außerdem ist auch $-g$ negativ - somit ist unser Zähler negativ. Der Nenner ist positiv, da [mm] $e^g$ [/mm] immer einen positiven Wert annimmt. Man kann also erkennen, dass der Bruch insgesamt negativ ist.

Ist es jetzt verständlicher?

Gruß Seppel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]