matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertverhalten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Grenzwertverhalten
Grenzwertverhalten < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertverhalten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Mi 26.09.2007
Autor: DaniTwal

Aufgabe
lim                      1-cosx
x->0    ___________________
             x( wurzel {1+x} -1 )
          
              

Ich bin zu folgender Rechnung gekommen:

lim                      1-cosx
x->0    ___________________   / * (1+cosx)    /   * wurzel {1+x} +1
             x( wurzel {1+x} -1 )             ______           _______________
                                                          (1+cosx)            wurzel {1+x} +1


=        lim           1 - [mm] (cosx)^2 [/mm]  *  (wurzel {1+x} +1)        
         x->0          ___________________________            

                             x (1+cosx) + (1+x+1)    


Ich weiß jetzt aber leider nicht, wie ich das x im nenner ausklammern kann , damit ich bei grenzwert gegen 0 keine 0 im nenner stehen habe!

Danke im voraus!
Dani
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.  

        
Bezug
Grenzwertverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mi 26.09.2007
Autor: Karl_Pech

Hallo DaniTwal,


> lim                      1-cosx
>  x->0    ___________________
>               x( wurzel {1+x} -1 )


Die Formeln bei dir sind leider nur schwer lesbar. Benutze das nächste mal deshalb bitte den Formeleditor.


Deine Aufgabe lautet also:


[mm]\lim_{x\to 0}{\frac{1-\cos x}{x\left(\sqrt{1+x}-1\right)}}[/mm]


Benutze hier den Satz von L'Hospital. Es handelt sich hier um den Fall "[mm]\tfrac{0}{0}[/mm]", d.h. Zähler und Nenner des Quotienten streben gegen 0. Deshalb kannst du die Zähler- & und Nennerfunktion ableiten:


[mm]\lim_{x\to 0}{\frac{\sin x}{\sqrt{1+x}-1+0.5x(1+x)^{-0.5}}}=\lim_{x\to 0}{\frac{\sin x}{\frac{1+x}{\sqrt{1+x}}-\frac{\sqrt{1+x}}{\sqrt{1+x}}+\frac{0.5x}{\sqrt{1+x}}}}=\lim_{x\to 0}{\frac{\sin(x)\sqrt{1+x}}{1+1.5x-\sqrt{1+x}}}[/mm]


Und jetzt erhalten wir wieder den obigen Fall, also können wir nochmal ableiten:


[mm]\lim_{x\to 0}{\frac{\cos(x)\sqrt{1+x}+0.5\sin(x)(1+x)^{-0.5}}{1.5-0.5(1+x)^{-0.5}}}=\frac{1}{1.5-0.5}=1[/mm]



Viele Grüße
Karl




Bezug
                
Bezug
Grenzwertverhalten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Mi 26.09.2007
Autor: DaniTwal

Erstmal danke für die schnelle Antwort! Leider haben wir die L'Hospital-Rechnung noch gar nicht im Unterricht behandelt. Wir sollten es irgendwie auch so schaffen..
Würde mich daher sehr freuen, wenn du es mir auch ohne L'Hospital demonstrieren könntest.
Gruß,
dani

Bezug
                        
Bezug
Grenzwertverhalten: erweitern
Status: (Antwort) fertig Status 
Datum: 20:55 Mi 26.09.2007
Autor: Loddar

Hallo Dani,

[willkommenmr] !!


Erweitere Deinen Bruch mal mit dem Term [mm] $\left( \ \wurzel{1+x} \ \red{+} \ 1 \ \right)*\left(1 \ \red{+} \ \cos(x) \ \right)$ [/mm] ...

Anschließend den trigonometrischen Pythagoras [mm] $\sin^2(x)+\cos^2(x) [/mm] \ = \ 1$ berücksichtigen und den entstehenden Bruch in zwei Einzelbrüche zerlegen ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]