matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwerte mit Gaußklammer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Grenzwerte mit Gaußklammer
Grenzwerte mit Gaußklammer < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte mit Gaußklammer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 So 11.04.2010
Autor: mattloo

Aufgabe
Sei [mm] $\lfloor x\rfloor [/mm] : [mm] \IR \to \IZ$ [/mm] mit

[mm] $\lfloor x\rfloor [/mm] = [mm] max\{n \in \IZ | n \le x\}$ [/mm]

die Gaußklammer und $f$ und [mm] $f_m$ [/mm] definiert durch

$f(x) = (1-(x- [mm] \lfloor x\rfloor)*(\lfloor x\rfloor [/mm] +1 [mm] -x))^{|\lfloor x\rfloor |}$ [/mm] und [mm] $f_m(x) [/mm] = f(m!x)$

Zeige:
a) [mm] $\limes_{m\rightarrow\infty} \int_0^1 f_m [/mm] (x) dx =0$
b) [mm] $\limes_{m\rightarrow \infty} f_m(x) [/mm] = 1$ für [mm] $0\le x\le1, [/mm] x [mm] \in \IQ$ [/mm]

Hallo,
ich habe keine Ahnung wie man integriert mit Gaußklammern.
Irgendwo habe ich gelesen, dass man das durch Zerstückelung der Integrationsintervalle macht, aber bei diesem Intervall weis ich nicht wie man das machen muss. Könnte mir vielleicht jemand sagen, wie ich anfangen soll? Ob man den Limes erstmal ignoriert und das Integral zuerst berechnet oder ob es komplett anders geht.

mattloo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwerte mit Gaußklammer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 So 11.04.2010
Autor: rainerS

Hallo mattloo!

Erstmal herzlich [willkommenmr]

> Sei [mm]\lfloor x\rfloor : \IR \to \IZ[/mm] mit [mm]\lfloor x\rfloor = max\{n \in \IZ | n \le x\}[/mm]
>  
> die Gaußklammer und [mm]f[/mm] und [mm]f_m[/mm] definiert durch
>
> [mm]f(x) = (1-(x- \lfloor x\rfloor)*(\lfloor x\rfloor +1 -x))^{|\lfloor x\rfloor |}[/mm] und [mm]f_m(x) = f(m!x)[/mm]
>  
> Zeige:
>  a) [mm]\limes_{m\rightarrow\infty} \int_0^1 f_m (x) dx =0[/mm]
>  b) [mm]\limes_{m\rightarrow \infty} f_m(x) = 1[/mm] für [mm]0\le x\le1, x \in \IQ[/mm]
>  
> Hallo,
>  ich habe keine Ahnung wie man integriert mit
> Gaußklammern.
>  Irgendwo habe ich gelesen, dass man das durch
> Zerstückelung der Integrationsintervalle macht, aber bei
> diesem Intervall weis ich nicht wie man das machen muss.
> Könnte mir vielleicht jemand sagen, wie ich anfangen soll?
> Ob man den Limes erstmal ignoriert und das Integral zuerst
> berechnet oder ob es komplett anders geht.

Erstmal ein paar Tipps, damit du ein besseres Gefühl für die Funktionen bekommst.

Du betrachtest in der Aufgabe nur Werte [mm] $x\ge [/mm] 0$, und da sind [mm] $\lfloor x\rfloor [/mm] $ der ganzzahlige Anteil von x und [mm] $x-\lfloor x\rfloor [/mm] $ die Nachkommastellen von x.  Es ist

  [mm] 0\le x- \lfloor x\rfloor <1 \gdw 0 < 1-(x- \lfloor x\rfloor) \le 1 [/mm]

Weiterhin ist immer $1-(x- [mm] \lfloor x\rfloor) [/mm] = [mm] \lfloor x\rfloor [/mm] +1 -x $ und daher

[mm] f(x) = (1-(x- \lfloor x\rfloor))^{|\lfloor x\rfloor |+1} [/mm] ,

und da für [mm] $x\ge [/mm] 0$ auch [mm] $\lfloor x\rfloor \ge [/mm] 0$ ist:

[mm] f(x) = (1-(x- \lfloor x\rfloor))^{\lfloor x\rfloor +1} [/mm] .

Welchen Wert hat also $f(x)$ für eine nichtnegative ganze Zahl x ?

Vielleicht fängst du mal mit der Teilaufgabe b) an und überlegst dir, wie für eine rationale Zahl x die Werte der Funktionen

  [mm] $f_m(x) [/mm] = f(m!x) $

aussehen.

Für die Teilaufgabe a) solltest du dir die Funktionen [mm] $f_m(x)$ [/mm] im Intervall $[0,1]$ genauer anschauen, vor allem, wie sich sich mit wachsendem m verändern.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]