matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwerte bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Grenzwerte bestimmen
Grenzwerte bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Do 30.10.2008
Autor: ronja33

Aufgabe
Man bestimme (falls sie existieren) die folgenden Grenzwerte:
1)    [mm] \limes_{x\rightarrow0} \bruch{x}{|x|} [/mm]

2)    [mm] \limes_{x\rightarrow1} \bruch{x-1}{|x|-1} [/mm]

3)    [mm] \limes_{x\rightarrow1} \bruch{ax^2+bx-a-b}{x^2-1} [/mm]

4)    [mm] \limes_{x\rightarrow\infty} \bruch{\wurzel{x}+10}{\wurzel{1+\wurzel{x^2+1}}} [/mm]

5)    [mm] \limes_{x\rightarrow1}(\limes_{n\rightarrow\infty}x^n) [/mm]

6)    [mm] \limes_{n\rightarrow\infty}(\limes_{x\rightarrow1-}x^n) [/mm]

Hallo,

hab' ein paar Probleme beim Bestimmen der Grenzwerte:

1) Muss ich hier eine Fallunterscheidung machen oder wie kann ich das Betragzeichen berücksichtigen?

2) wie bei 1)

3) hier hätte ich gesagt, der Grenzwert sei 1, da der Zähler und der Nenner gegen 0 konvergieren. (Habe durch [mm] x^2 [/mm] geteilt und dann geschaut, was jeweils passiert).Jedoch sagt mir mein Matheprogramm etwas anderes : lim = (2a+b)/2    Wie  komme ich denn auf das Ergebnis???

4) lim= 1 sagt mein Matheprogramm, jedoch würde ich gerne verstehen und beweisen können, warum. Mir bereiten hier die Wurzeln etwas Schwierigkeiten.

5) Matheprogramm sagt wieder lim =0 :-), aber ich weiß nicht wie ich das beweisen könnte

6) lim = 1, gleiches Problem wie bei 5

Vielen Dank für jede Hilfe im Voraus.

Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Grenzwerte bestimmen: erste Hinweise zu (1) bis (4)
Status: (Antwort) fertig Status 
Datum: 10:04 Do 30.10.2008
Autor: Roadrunner

Hallo Ronja!



> 1) Muss ich hier eine Fallunterscheidung machen oder wie
> kann ich das Betragzeichen berücksichtigen?

[ok] Fallunterscheidung!

  

> 2) wie bei 1)

[ok]

  

> 3) hier hätte ich gesagt, der Grenzwert sei 1, da der
> Zähler und der Nenner gegen 0 konvergieren. (Habe durch [mm]x^2[/mm]
> geteilt und dann geschaut, was jeweils passiert).Jedoch
> sagt mir mein Matheprogramm etwas anderes : lim = (2a+b)/2  
> Wie  komme ich denn auf das Ergebnis???

Führe für Zähler und Nenner jeweils eine MBPolynomdivision durch [mm] $\left(x-1\right)$ [/mm] durch und kürze anschließend.

  

> 4) lim= 1 sagt mein Matheprogramm, jedoch würde ich gerne
> verstehen und beweisen können, warum. Mir bereiten hier die
> Wurzeln etwas Schwierigkeiten.

Klammere in Zähler und Nenner jeweils [mm] $\wurzel{x}$ [/mm] aus.

  
Gruß vom
Roadrunner


Bezug
        
Bezug
Grenzwerte bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Do 30.10.2008
Autor: SirSmoke


> 3) hier hätte ich gesagt, der Grenzwert sei 1, da der
> Zähler und der Nenner gegen 0 konvergieren. (Habe durch [mm]x^2[/mm]
> geteilt und dann geschaut, was jeweils passiert).Jedoch
> sagt mir mein Matheprogramm etwas anderes : lim = (2a+b)/2  
>   Wie  komme ich denn auf das Ergebnis???

Hier kannst du auch mal ausprobieren, die a's und b's zu trennen, und dann ausklammern ;)

[mm] \limes_{x\rightarrow1} \bruch{ax^2-a}{x^2-1} [/mm] + [mm] \limes_{x\rightarrow1} \bruch{bx-b}{x^2-1} [/mm]

Bezug
        
Bezug
Grenzwerte bestimmen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Do 30.10.2008
Autor: Roadrunner

Hallo Ronja!



Gibt es bei (5) und (6) noch jeweils Angaben über $x_$ ?


Gruß vom
Roadrunner


Bezug
                
Bezug
Grenzwerte bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Do 30.10.2008
Autor: ronja33

Vielen Dank für die Hilfen!

Nein es gibt keine Angabe zu x.

grüße

Bezug
                
Bezug
Grenzwerte bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Do 30.10.2008
Autor: SirSmoke

lediglich, dass die 1er in 5) und 6) gegen die x geht, mit einem kleinen Minus versehen sind ... da hat unser Tutor nur gemeint, dass sich x der 1 von der anderen Richtung nähert, also von 0

Bezug
        
Bezug
Grenzwerte bestimmen: zu (5) und (6)
Status: (Antwort) fertig Status 
Datum: 10:23 Do 30.10.2008
Autor: Roadrunner

Hallo Ronja!


Hm, ich kann die Ergebisse Deines Programmes nicht nachvollziehen ... [kopfkratz3]


Aber ich würde hier so vorgehen:

[mm] $$\limes_{x\rightarrow1}\left(\limes_{n\rightarrow\infty}x^n\right) [/mm] \ = \ [mm] \limes_{x\rightarrow1}x^n [/mm] \ = \ ...$$

[mm] $$\limes_{n\rightarrow\infty}\left(\limes_{x\rightarrow1-}x^n\right) [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}1^n [/mm] \ = \ ...$$


Gruß vom
Roadrunner


Bezug
                
Bezug
Grenzwerte bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Do 30.10.2008
Autor: SirSmoke

Somit wäre  der Grenzwert hierfür:

[mm] \limes_{x\rightarrow1-}\left(\limes_{n\rightarrow\infty}x^n\right) [/mm] \ = \ [mm] \limes_{x\rightarrow1-}x^n [/mm] \ = [mm] \limes_{x\rightarrow1-} [/mm] 0

[mm] \limes_{n\rightarrow\infty}\left(\limes_{x\rightarrow1-}x^n\right) [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}(-1)^n [/mm] \ = [mm] \limes_{n\rightarrow\infty} [/mm] 1


Oder?

Bezug
                        
Bezug
Grenzwerte bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Do 30.10.2008
Autor: fred97


> Somit wäre  der Grenzwert hierfür:
>  
> [mm]\limes_{x\rightarrow1-}\left(\limes_{n\rightarrow\infty}x^n\right)[/mm]
> \ = \ [mm]\limes_{x\rightarrow1-}x^n[/mm] \ =
> [mm]\limes_{x\rightarrow1-}[/mm] 0

Unsinn !  Mache die Fallunterscheidung |x|<1, |x|>1, x=1 und x=-1 und untersuche jeweils die Folge [mm] (x^n) [/mm] auf Konvergenz. Anschließend , im Konvergenzfall, untersuche x--> 1-


>  
> [mm]\limes_{n\rightarrow\infty}\left(\limes_{x\rightarrow1-}x^n\right)[/mm]
> \ = \ [mm]\limes_{n\rightarrow\infty}(-1)^n[/mm] \ =
> [mm]\limes_{n\rightarrow\infty}[/mm] 1


Auch das ist Unsinn. Es ist

[mm] \limes_{x\rightarrow1-}x^n [/mm] =1


FRED


>  
>
> Oder?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]