matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwerte bei Wurzeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwerte bei Wurzeln
Grenzwerte bei Wurzeln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bei Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Do 31.01.2008
Autor: mareike-f

Ich habe diese Frage in keinem anderem Forum gestellt.

Hi,
ich wollte fragen, wann ich einen Grenzwert richtig beweisen muss und wann es reicht ihn um zu formen.
Wenn ich es schaffe in umzuformen in Formen die ich schon kenne, reicht das doch als Beweis, oder? Erst wenn ich es das nicht schaff, brauch ich Bolzano-Weierstraß und Co oder?

Zum Beispiel:
Berechne Sie den Grenzwert der Funktion:
[mm]lim_{n\to \infty} \wurzel{9n^2+2n+1}-3n[/mm]

[mm]lim_{n \to \infty} 9n^2+2n+1-9n^2 =lim_{n \to \infty} 2n+1 =lim_{n \to \infty} \bruch{2n+1}{3}= \bruch{1}{3}[/mm]

Reicht das?


Grüße,
Mareike


        
Bezug
Grenzwerte bei Wurzeln: total falsch
Status: (Antwort) fertig Status 
Datum: 12:45 Do 31.01.2008
Autor: Roadrunner

Hallo Mareike!


Dein Weg ist leider total falsch. Zum einen darfst Du ja nicht einfach den Folgenterm quadrieren, da Du ja dadurch den Wert veränderst.

Zudem hast Du dann auch noch falsch quadriert (Du müsstest hier die binomische Formel anwenden).


Erweitere Deinen Ausdruck mal mit dem Term [mm] $\left( \ \wurzel{9n^2+2n+1} \ \red{+} \ 3n \ \right)$ [/mm] und klammere anschließend im Nenner $3n_$ aus.


Gruß vom
Roadrunner


Bezug
                
Bezug
Grenzwerte bei Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Do 31.01.2008
Autor: mareike-f

Ohje, dankeschön.

Jetzt hab ich es wir folgt gemacht:

-erweitert
[mm]\bruch{(\wurzel{9n^2+2n+1}-3n)(\wurzel{9n^2+2n+1}+3n)}{\wurzel{9n^2+2n+1}+3n}[/mm]

-Zähler ausmultipliziert, 3n ausgeklammert
[mm]\bruch{2n+1}{3n(\bruch{\wurzel{9n^2+2n+1}}{3n}+1)}[/mm]

aber wieso 3n ausklammern reicht es nicht auch nur n zu nehmen?
[mm]\bruch{2n+1}{\bruch{\wurzel{9n^2+2n+1}}{n}+3}[/mm]

Grüße,
Mareike

Bezug
                        
Bezug
Grenzwerte bei Wurzeln: weiter umformen
Status: (Antwort) fertig Status 
Datum: 13:40 Do 31.01.2008
Autor: Roadrunner

Hallo Mareike!


Ja, es reicht auch aus, nur $n_$ auszuklammern. Das solltest Du auch im Zähler machen, um zu kürzen.

Zudem musst Du dann noch den Ausdruck mit der Wurzel etwas umformen, um anschließend die Grenzwertbetrachtung durchzuführen:

[mm] $$\bruch{\wurzel{9*n^2+2*n+1}}{n} [/mm] \ = \ [mm] \bruch{\wurzel{9*n^2+2*n+1}}{\wurzel{n^2}} [/mm] \ = \ [mm] \wurzel{\bruch{9*n^2+2*n+1}{n^2}} [/mm] \ = \ [mm] \wurzel{\bruch{9*n^2}{n^2}+\bruch{2*n}{n^2}+\bruch{1}{n^2}} [/mm] \ = \ ...$$

Gruß vom
Roadrunner


Bezug
                                
Bezug
Grenzwerte bei Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Do 31.01.2008
Autor: mareike-f

Hi,

ich würde jetzt unter der Wurzel kürzen dann hätte ich:
[mm]\frac{2+\frac{1}{n}}{\sqrt{9+\frac{2}{n}+\frac{1}{n^2}}+3}[/mm]

Aber Summenweise die Wurzel ziehen darf ich ja nicht.
Irgenwie komm ich schon wieder nicht weiter.

Grüße,
Mareike

Bezug
                                        
Bezug
Grenzwerte bei Wurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Do 31.01.2008
Autor: schachuzipus

Hallo Mareike,

> Hi,
>  
> ich würde jetzt unter der Wurzel kürzen dann hätte ich:
>  
> [mm]\frac{2+\frac{1}{n}}{\sqrt{9+\frac{2}{n}+\frac{1}{n^2}}+3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Aber Summenweise die Wurzel ziehen darf ich ja nicht.

Da hast du recht

>  Irgenwie komm ich schon wieder nicht weiter.

Du kannst hier ja schon direkt den Grenzübergang $n\to\infty$ machen.

Dann geht das Ding gegen $\frac{2+0}{\sqrt{9+0+0}+3}=\frac{2}{3+3}=\frac{1}{3}$

Alternativ kannst unter der Wurzel die 9 ausklammern und "aus der Wurzel rausziehen", dann kannst du im Nenner 3 ausklammern

$\frac{2+\frac{1}{n}}{\sqrt{9+\frac{2}{n}+\frac{1}{n^2}}+3}=\frac{2+\frac{1}{n}}{\sqrt{9\cdot{}\left(1+\frac{2}{9n}+\frac{1}{9n^2}}+3\right)}}=\frac{2+\frac{1}{n}}{\sqrt{9}\cdot{}\sqrt{1+\frac{2}{9n}+\frac{1}{9n^2}}+3}$

$=\frac{2+\frac{1}{n}}{3\cdot{}\sqrt{1+\frac{2}{9n}+\frac{1}{9n^2}}+3}=\frac{2+\frac{1}{n}}{3\cdot{}\left[\sqrt{1+\frac{2}{9n}+\frac{1}{9n^2}}+1\right]}\longrightarrow \frac{2+0}{3\left[\sqrt{1+0+0}+1\right]}=\frac{2}{6}=\frac{1}{3}$ für $n\to\infty$


> Grüße,
>  Mareike

LG

schachuzipus


Bezug
                                                
Bezug
Grenzwerte bei Wurzeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Do 31.01.2008
Autor: mareike-f

Autsch bin ich blöd war ja eigentl. zu sehen.

Dankeschön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]