matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwerte bei Reihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwerte bei Reihen
Grenzwerte bei Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte bei Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 So 23.09.2012
Autor: Tony1234

Aufgabe
a) [mm] \bruch{3n^3}{2n^3} [/mm]

b) [mm] \bruch{3n^3}{2n^2} [/mm]

c) [mm] \bruch{3n^2}{2n^3} [/mm]

Hallo, ich habe gerade überlegt, wie es iin den beiden unteren Fällen mit dem Grenzwert aussieht.

oben rechne ich einfach durch [mm] n^3 [/mm] und erhalte als Grenzwert [mm] \bruch{3}{2} [/mm]

Bei b kann ich ja höchstens durch [mm] n^2 [/mm] teilen und ein n bleibt im Zäler stehen.. geht die Folge dann gegen [mm] \infty? [/mm]

Bei c) erhalte ich [mm] \bruch{\bruch{3}{n}}{2} [/mm]
wie siht es hier aus? gegen 0?

        
Bezug
Grenzwerte bei Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:08 So 23.09.2012
Autor: Valerie20

Hi!

> a) [mm]\bruch{3n^3}{2n^3}[/mm]
>  
> b) [mm]\bruch{3n^3}{2n^2}[/mm]
>  
> c) [mm]\bruch{3n^2}{2n^3}[/mm]
>  Hallo, ich habe gerade überlegt, wie es iin den beiden
> unteren Fällen mit dem Grenzwert aussieht.
>  
> oben rechne ich einfach durch [mm]n^3[/mm] und erhalte als Grenzwert
> [mm]\bruch{3}{2}[/mm]
>  
> Bei b kann ich ja höchstens durch [mm]n^2[/mm] teilen und ein n
> bleibt im Zäler stehen.. geht die Folge dann gegen
> [mm]\infty?[/mm]
>  
> Bei c) erhalte ich [mm]\bruch{\bruch{3}{n}}{2}[/mm]
>  wie siht es hier aus? gegen 0?

Deine Überschrift lautet "Grenzwert bei Reihen".
Reihen sehe ich hier aber nicht.
Desweiteren schreibst du etwas über Folgen...

Teile bitte zunächst die korrekte Aufgabenstellung mit.
So ist das sinnfrei.

Valerie


Bezug
                
Bezug
Grenzwerte bei Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 So 23.09.2012
Autor: Tony1234

Ja, ich meinte natürlich Folgen.. war vorher mit Reihen beschäftigt, daher etwas durcheinander!

Bezug
        
Bezug
Grenzwerte bei Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 So 23.09.2012
Autor: M.Rex

Hallo

> a) [mm]\bruch{3n^3}{2n^3}[/mm]

Diese Folge ist eine Konstante Folgen, denn man kann das n³ komplett herauskürzen

>  
> b) [mm]\bruch{3n^3}{2n^2}[/mm]

Auch hier kannst du kürzen zu [mm] \frac{3n}{2} [/mm]

>  
> c) [mm]\bruch{3n^2}{2n^3}[/mm]

Auch hier kürze zu [mm] \frac{3}{2n} [/mm]

>  Hallo, ich habe gerade überlegt, wie es iin den beiden
> unteren Fällen mit dem Grenzwert aussieht.
>  
> oben rechne ich einfach durch [mm]n^3[/mm] und erhalte als Grenzwert
> [mm]\bruch{3}{2}[/mm]
>  
> Bei b kann ich ja höchstens durch [mm]n^2[/mm] teilen und ein n
> bleibt im Zäler stehen.. geht die Folge dann gegen
> [mm]\infty?[/mm]

für [mm] n\to\infty [/mm] ja, wenn die folge wirklich so definiert ist.

>  
> Bei c) erhalte ich [mm]\bruch{\bruch{3}{n}}{2}[/mm]
>  wie siht es hier aus? gegen 0?

Für [mm] n\to\infty [/mm] geht die Folge, sofern sie so definiert ist, in der Tat gegen 0.

Wie Valerie aber schon sagte, wäre es hilfreich, die genaue Definition der Folgen zu bekommen.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]