matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGrenzwerte (W-Theorie)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Grenzwerte (W-Theorie)
Grenzwerte (W-Theorie) < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte (W-Theorie): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:25 So 20.06.2010
Autor: Leipziger

Aufgabe
Beweisen Sie folgende Aussage: Sei n [mm] \in \IN. [/mm] Weiter sei [mm] (M_{N})_{N \ge n} [/mm] eine Folge aus [mm] \IN [/mm] mit folgenden Eigenschaften:
(I)  N [mm] \in [/mm] {n, n + 1, . . . } gilt [mm] M_{N} \le [/mm] N.
(II) Die Folge [mm] (\bruch{M_{N}}{N})_{N \ge n} [/mm] konvergiert gegen eine Zahl p [mm] \in [/mm] (0,1)
Dann gelten folgende Aussagen:
(a) Es gilt [mm] \limes_{N\rightarrow\infty} M_{N} [/mm] = [mm] +\infty [/mm] sowie [mm] \limes_{N\rightarrow\infty} [/mm] (n + [mm] M_{N} [/mm] − N) = [mm] -\infty. [/mm]
(b) Sei k [mm] \in [/mm] {0,1, . . .,n}. Dann gilt [mm] \limes_{N\rightarrow\infty} M_{N, M_{N}, n} [/mm] ({k}) = [mm] \beta_{n,p} [/mm] ({k}).

Hallo,

seit langer Zeit hab ich mal wieder eine Frage.

Obige Aufgabe (zumindestens Teil (a)), die im Fach W-Theorie zu bearbeiten ist, sah für mich auf den ersten Blick relativ einfach auf, aber scheinbar steh ich ein wenig auf dem Schlauch.

Für jegliche Tipps und Hinweise zu beiden Teilaufgaben wäre ich sehr dankbar. Vielleicht hat jemand auch schon ähnliche Aufgaben gelöst und kann mir sagen, worauf hier zu achten ist bzw. worauf das hier hinausläuft.

MfG Leipziger

        
Bezug
Grenzwerte (W-Theorie): Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 So 20.06.2010
Autor: Marcel

Hallo,

> Beweisen Sie folgende Aussage: Sei n [mm]\in \IN.[/mm] Weiter sei
> [mm](M_{N})_{N \ge n}[/mm] eine Folge aus [mm]\IN[/mm] mit folgenden
> Eigenschaften:
>  (I)  N [mm]\in[/mm] {n, n + 1, . . . } gilt [mm]M_{N} \le[/mm] N.
> (II) Die Folge [mm](\bruch{M_{N}}{N})_{N \ge n}[/mm] konvergiert
> gegen eine Zahl p [mm]\in[/mm] (0,1)
>  Dann gelten folgende Aussagen:
>  (a) Es gilt [mm]\limes_{N\rightarrow\infty} M_{N}[/mm] = [mm]+\infty[/mm]
> sowie [mm]\limes_{N\rightarrow\infty}[/mm] (n + [mm]M_{N}[/mm] − N) =
> [mm]-\infty.[/mm]
>  (b) Sei k [mm]\in[/mm] {0,1, . . .,n}. Dann gilt
> [mm]\limes_{N\rightarrow\infty} M_{N, M_{N}, n}[/mm] ({k}) =
> [mm]\beta_{n,p}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

({k}).

>  Hallo,
>  
> seit langer Zeit hab ich mal wieder eine Frage.
>  
> Obige Aufgabe (zumindestens Teil (a)), die im Fach
> W-Theorie zu bearbeiten ist, sah für mich auf den ersten
> Blick relativ einfach auf, aber scheinbar steh ich ein
> wenig auf dem Schlauch.
>  
> Für jegliche Tipps und Hinweise zu beiden Teilaufgaben
> wäre ich sehr dankbar. Vielleicht hat jemand auch schon
> ähnliche Aufgaben gelöst und kann mir sagen, worauf hier
> zu achten ist bzw. worauf das hier hinausläuft.
>  
> MfG Leipziger

zu (a):
1.) Wegen $M_N/N \to p > 0$ können wir zu $\varepsilon:=p/2 > 0$ ein $N=N_\varepsilon$ angeben, so dass insbesondere gilt
$$M_N=\frac{M_N}{N}*N \ge (p-\varepsilon)*N=(p/2)*N \text{ für alle } N \ge N_\varepsilon\,.$$
Da offensichtlich $(p/2)*N \;\to\; \infty$ gilt, folgt aus obigem nun $M_N \;\to\; \infty\,,$

2.) Es gilt
$$n+M_N-N=\frac{n+M_N-N}{N}*N=\blue{\left(\frac{n}{N}+\frac{M_N}{N}-1\right)}*N\,.$$

Da $n\,$ fest ist, strebt der Term in der Klammer offensichtlich (genauer: wegen Rechengesetzen für konvergente Folgen) gegen $g:=p-1\,,$ und wegen $p \in (0,1)$ ist damit $g \in (-1,0)\,,$ jedenfalls $g < 0\,.$
Mit einer Abschätzung analog zu 1.) folgt 2.) (der Klammerterm wird ab genügend großen $N\,$ stets insbesondere $\le (g+\varepsilon),$ mit $\varepsilon:=-g/2 > 0\,,$ sein, so dass ab dann
$$\blue{\text{Klammerterm} *N \le \underbrace{(g+\varepsilon)}_{=:q}*N$$
gilt, wobei $q < 0\,$ ist).

Bei (b) weiß ich leider weder, was
$$M_{N, M_{N}, n}$$
bzw.
$$M_{N, M_{N}, n}(\{k\})$$
sein soll, noch, was mit
$$\beta_{n,p}(\{k\})$$
gemeint ist.

Im ersten Teil war ja $(M_N)_{N \ge n}$ eine Folge in $\IN\,,$ das heißt
$$(M_N)_{N \ge n} \in \IN^{\IN_{\ge n}}$$
bzw.
$$M \in \IN^{\IN_{\ge n}}$$
mit $\IN_{\ge n}:=\{k \in \IN: k \ge n\}\,.$
Oder anders formuliert:
$M\,$ ist eine Abbildung $\IN_{\ge n} \to \IN\,,$ was nichts anderes besagt, als dass
$$M_N=M(N) \in \IN \text{ für alle } N \in \IN_{\ge n}$$
ist.

Beim zweiten Teil ist mir unklar, was diese Mehrfachindizierung an $M\,$ bedeuten soll und auch, was das dahinterstehende $(\{k\})$ bedeutet.

Denn für eine Folge $(a_n)_{n \in \IN}$ macht meines Erachtens $a_n(\{k\})$ schonmal keinen Sinn.

Beste Grüße,
Marcel

Bezug
                
Bezug
Grenzwerte (W-Theorie): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 So 20.06.2010
Autor: Leipziger

Vielen Dank!

Das war ja schon weit mehr als ein Hinweis. Ich denke, dass ich das auch alles soweit verstanden hab.

Bei Aufgabenteil (b) weiß ich leider auch noch nicht, was das alles genau bedeuten soll, aber [mm] \beta_{n,p} [/mm] ({k}) ist vermutlich die Binomialverteilung.

Mir ist noch ein kleiner Fehler aufgefallen, denn es muss heißen:
Sei k [mm]\in[/mm] {0,1, . . .,n}. Dann gilt [mm] \limes_{N\rightarrow\infty} H_{N, M_{N}, n} [/mm] ({k}) = [mm] \beta_{n,p} [/mm] ({k}).


Bezug
                        
Bezug
Grenzwerte (W-Theorie): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 So 20.06.2010
Autor: Marcel

Hallo,

> Vielen Dank!
>  
> Das war ja schon weit mehr als ein Hinweis. Ich denke, dass
> ich das auch alles soweit verstanden hab.

das letztere ist das wichtigere. Wenn Du die Rechnung mit dem ersten Grenzwert verstanden hast, ist die zweite eigentlich leicht.
Vielleicht ein Tipp, wie ich auf die Idee kam:
Zunächst stand da ja nur etwas von [mm] $M_N/N \to [/mm] p$ und am Anfang wollte man eine Aussage über [mm] $M_N$ [/mm] erhalten. Deswegen war die Erweiterung
[mm] $$M_N=M_N*\frac{N}{N}=\frac{M_N}{N}*N$$ [/mm]
naheliegend.

Damit das ganze einen höheren Lerneffekt für Dich hat: Nachdem Du meine Lösung gelesen hast, alles weglegen und versuchen, das ganze nochmal alleine so zusammenzubasteln. Das sollte Dir eigentlich - nach vielleicht zwei Versuchen, in denen Du nochmal kurz gespickt hast - gelingen.
  

> Bei Aufgabenteil (b) weiß ich leider auch noch nicht, was
> das alles genau bedeuten soll, aber [mm]\beta_{n,p}[/mm] ({k}) ist
> vermutlich die Binomialverteilung.
>  
> Mir ist noch ein kleiner Fehler aufgefallen, denn es muss
> heißen:
>  Sei k [mm]\in[/mm] {0,1, . . .,n}. Dann gilt
> [mm]\limes_{N\rightarrow\infty} H_{N, M_{N}, n}[/mm] ({k}) =
> [mm]\beta_{n,p}[/mm] ({k}).

Das mag' sein. Nächste Frage: Was ist hierbei nun [mm] $H_{p,q,r}(\{k\})$ [/mm] ($p,q,r [mm] \in \IN$)? [/mm]

Beste Grüße,
Marcel

Bezug
        
Bezug
Grenzwerte (W-Theorie): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 23.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]