matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Grenzwerte
Grenzwerte < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:33 So 13.05.2012
Autor: the_slim_shady_

Aufgabe
berechne lim x-> 0/1  von [mm] (3x^2-3-ln(x))/(2e^x [/mm] - 2e)

Hallo allerseits.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe die folgende aufgabe als hausaufgabe bekommen. Ich habe versucht diese zu lösen, bin mir aber nicht genau sicher ob ich damit richtig liege.
hier sind meine ansätze:

lim x->0   [mm] (3x^2-3-ln(x))/(2e^x [/mm] - 2e)

ich habe erst versucht jedes einzelne element gegen null anzustreben. dabei bekam ich folgendes raus für lim  x->0  [mm] (3x^2(=0)-3-ln(x)(-\infty))/(2-2e) [/mm]

Am ende kommt dann raus [mm] (-3+\infty) [/mm] /( 2-2e) (wir sollen keine taschenrechner anwänden etc. daher bleibt das e bestehen)

Läge ich dann richtig wenn ich am ende schreibe dass es bei x->0 gegen [mm] -\infty [/mm] strebt da [mm] +\infty(positve)/ [/mm] 2-2e (negative)?


Bei der lim x->1 hatte ich den gleichen ansatz: lim x->1  [mm] (3x^2(3)-3-ln(x)(0))/(2e-2e)-->0/0 [/mm]

Da es 0/0 kann ich doch l´hospital regel anwenden oder?

Die habe ich dann angewenden: [mm] (6x-1/x)/(2e^x) [/mm]

endresultat : lim x->1  : 5/2e

Bin ich mit meinen Ansätzen richtig?

Danke im voraus!!!!



        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 So 13.05.2012
Autor: angela.h.b.


> Bin ich mit meinen Ansätzen richtig?


Hallo,

[willkommenmr].

Deine Überlegungen sind richtig.

LG Angela



Bezug
                
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 So 13.05.2012
Autor: the_slim_shady_

Vielen dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]