matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwerte
Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 19.01.2010
Autor: Amy-chan

Aufgabe
Berechnen sie [mm] \limes_{x\rightarrow\infty}(\bruch{x^{2}+1}{x^{2}-1})^{x^{2}}, [/mm] indem Sie durch geeignete Umformung an bekannte
Grenzwerte anknüpfen.

Ich weiß echt nicht welche "bekannte Grenzwerte" damit gemeint sein könnten..

habs zwar auf verschiedenen Wegen versucht umzuformen, aber komme bei keinem Versuch weiter =(

Könnt ihr mir einen Tipp geben in welche Richtung das ganze gehen soll?

lg, Amy

        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Di 19.01.2010
Autor: schachuzipus

Hallo Amy,

> Berechnen sie
> [mm]\limes_{x\rightarrow\infty}(\bruch{x^{2}+1}{x^{2}-1})^{x^{2}},[/mm]
> indem Sie durch geeignete Umformung an bekannte
> Grenzwerte anknüpfen.
>  
> Ich weiß echt nicht welche "bekannte Grenzwerte" damit
> gemeint sein könnten..

Nun, du kennst sicher [mm] $\lim\limits_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$ [/mm]

Und entsprechend [mm] $\lim\limits_{x\to\infty}\left(1+\frac{\alpha}{x}\right)^x=e^{\alpha}$ [/mm]

>  
> habs zwar auf verschiedenen Wegen versucht umzuformen, aber
> komme bei keinem Versuch weiter =(

Dann zeige uns doch die Versuche, vllt. war da ja schon das richtige dabei.

Woher sollen wir das sonst wissen?

Ein Tipp noch: Addiere eine nahrhafte Null im Zähler, schreibe dort -1+1 dazu.

Dann kannst du den Bruch auseinanderziehen.

Um auch den Exponenten entsprechend den oben hingeschreibenen bekannten GWen hinzubiegen, denke an die stadtbekannten Potenzgesetze.

Schließlich helfen die die bekannten Grenzwertsätze weiter ...

>  
> Könnt ihr mir einen Tipp geben in welche Richtung das
> ganze gehen soll?

Jo, siehe oben, nun gib Gas und zeige nachher mal her, was du mit den Hinweisen anstellst ;-)

Viel Erfolg dabei und lg

schachuzipus

>  
> lg, Amy


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]