Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Frage) überfällig    |    | Datum: |  16:27 Sa 28.11.2009 |    | Autor: |  Fry |   
	   
	   Hallo,
 
 
folgendes Problem. Habe in der Vorlesung eine Umformung gefunden, die ich nicht verstehe:
 
 
[mm] "$\lim_{n\to\infty}\frac{n*\log p_n}{p_n}=\frac{1}{m}$
 [/mm] 
 
Hieraus folgt durch Logarithmieren:
 
[mm] $\lim_{n\to\infty}\frac{\log n}{\log p_n}=1$"
 [/mm] 
 
(Hierbei ist [mm] $p_n$ [/mm] eine Folge mit [mm] $p_n\to\infty$
 [/mm] 
und m eine Konstante)
 
 
Könnt ihr sagen, wie man auf die Schlußfolgerung kommt? Danke!
 
 
Gruß
 
Fry
 
 
      | 
     
    
   | 
  
 |          | 
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Mitteilung) Reaktion unnötig    |    | Datum: |  17:20 Mi 02.12.2009 |    | Autor: |  matux |   
	   
	   $MATUXTEXT(ueberfaellige_frage) 
      | 
     
    
   | 
  
 
 |   
  
   |