matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwerte
Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Di 06.01.2009
Autor: Marizz

Aufgabe
Berechne folgende Grezwerte:

a) [mm] \limes_{n\rightarrow\infty}=\bruch{(1/2)^{n}+2*4^{n}}{5*4^{n}-2*3^{n}} [/mm]

b) [mm] \limes_{n\rightarrow\infty}=\wurzel{n+1}-\wurzel{n} [/mm]


c) [mm] \limes_{n\rightarrow\infty}=\bruch{(3/5)^{n+1}+ 3^{n+1}}{4*3^{n}-3*(3/2)^{n}} [/mm]

Ich soll Grenzwerte bestimmen. Die meisten kann ich lösen, aber  mit n im Exponenten und Wurzeln wie bei b) komm ich nicht klar... kann mir jemand einen Tip geben, wie man das umformt, so dass man den Limes ablesen kann? Oder geht das in diesen Fällen anders?
danke :)

        
Bezug
Grenzwerte: zu Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 21:03 Di 06.01.2009
Autor: Loddar

Hallo Marizz!


Erweitere den Term zu einer 3. binomischen Formel mit [mm] $\left( \ \wurzel{n+1} \ \red{+} \ \wurzel{n} \ \right)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Di 06.01.2009
Autor: Marizz

Danke dir Loddar, a) und c) hab ich raus!

also wenn ich hier erweiter:

[mm] (\wurzel{n+1}-\wurzel{n})(\wurzel{n+1}+\wurzel{n}) [/mm] = n+1-n = 1

also [mm] \limes_{n\rightarrow\infty} [/mm] 1 = 1 ?
wieso darf ich das einfach erweitern?

Bezug
                        
Bezug
Grenzwerte: erweitern
Status: (Antwort) fertig Status 
Datum: 21:30 Di 06.01.2009
Autor: Loddar

Hallo Marizz!


Du musst Deinen Term erweitern; nicht einfach mit etwas multiplizieren! Damit veränderst Du den Wert des Termes.

Nochmal deutlich:
[mm] $$\left( \ \wurzel{n+1}-\wurzel{n} \ \right)*\bruch{\blue{\wurzel{n+1}+\wurzel{n}}}{\blue{\wurzel{n+1}+\wurzel{n}}} [/mm] \ = \ [mm] \bruch{\left( \ \wurzel{n+1}-\wurzel{n} \ \right)*\left( \ \wurzel{n+1}+\wurzel{n} \ \right)}{\wurzel{n+1}+\wurzel{n}} [/mm] \ = \ ...$$

Gruß
Loddar



Bezug
        
Bezug
Grenzwerte: zu Aufgabe c.)
Status: (Antwort) fertig Status 
Datum: 21:04 Di 06.01.2009
Autor: Loddar

Hallo Marizz!


Klammere in Zähler und Nenner jeweils [mm] $3^n$ [/mm] aus und kürze.


Gruß
Loddar


Bezug
        
Bezug
Grenzwerte: zu Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 21:05 Di 06.01.2009
Autor: Loddar

Hallo Marizz!


Wie eben bei Aufgabe c.) ... nur hier jeweils [mm] $4^n$ [/mm] ausklammern und kürzen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]