matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwerte
Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Do 04.09.2008
Autor: Knievel

Aufgabe
Berechnen sie, falls existent, den Grenzwert von:

[mm] \limes_{n\rightarrow\infty} \left( \wurzel{n+1} \right) - \left( \wurzel{n-1} \right) \wurzel{n} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Und wieder einmal aus unserer Klausurvorbereitung.

Wir haben es uns (vllt. zu sehr) leicht gemacht.
Da ja [mm]\wurzel{n} [/mm] das selbe ist wie [mm]n^\bruch{1}{2}[/mm]
kann man den Term auch in dieser Form schreiben:

[mm]\left( \left(n+ 1\right) ^\bruch{1}{2} - \left(n- 1 \right) ^\bruch{1}{2}\right) \right) n^\bruch{1}{2}[/mm]

Dann die Klammer auflösen:
[mm]\left( n^2 + 1n \right) ^1 \left( n^2 - 1n \right)[/mm]

Somit wäre dies eine Nullfolge oder nicht?

Danke für eure Hilfe


        
Bezug
Grenzwerte: nicht richtig
Status: (Antwort) fertig Status 
Datum: 17:27 Do 04.09.2008
Autor: Loddar

Hallo Knievel!


Trotz eurer Umformung habt ihr noch immer einen unbestimmten Ausdruck der Art [mm] $\infty-\infty$ [/mm] .

Erweitert euren Term mit [mm] $\left( \ \wurzel{n+1} \ \red{+} \ \wurzel{n-1} \ \right)$ [/mm] .
Anschließend im Nenner [mm] $\wurzel{n}$ [/mm] ausklammern und kürzen.


Gruß
Loddar


Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Do 04.09.2008
Autor: Knievel

Autsch, tut mir leid, dass hätte uns auffallen müssen xD

So, haben wir es mal wie folgt nachgerechnet:

[mm]\limes_{n\rightarrow\infty} ( \wurzel{n+1}-\wurzel{n-1} ) \wurzel{n}[/mm]

[mm]\limes_{n\rightarrow\infty} \bruch{(( \wurzel{n+1}-\wurzel{n-1} ) \wurzel{n})(\wurzel{n+1}+\wurzel{n-1})}{(\wurzel{n+1}+\wurzel{n-1})}[/mm]

[mm]\limes_{n\rightarrow\infty} \bruch{\wurzel{n}}{\wurzel{n}(\wurzel{1}+(-\wurzel{1}))}[/mm] = [mm]\bruch{0}{0}[/mm]


Mfg Knievel

Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Do 04.09.2008
Autor: XPatrickX

Hey

> Autsch, tut mir leid, dass hätte uns auffallen müssen xD
>  
> So, haben wir es mal wie folgt nachgerechnet:
>  
> [mm]\limes_{n\rightarrow\infty} ( \wurzel{n+1}-\wurzel{n-1} ) \wurzel{n}[/mm]
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{(( \wurzel{n+1}-\wurzel{n-1} ) \wurzel{n})(\wurzel{n+1}+\wurzel{n-1})}{(\wurzel{n+1}+\wurzel{n-1})}[/mm] [ok]
>  

Der Rest stimmt dann nicht mehr.
Im Zähler steht ja die dritte binomische Formel:

= [mm] \limes_{n\rightarrow\infty} \bruch{2* \wurzel{n}}{(\wurzel{n+1}+\wurzel{n-1})} [/mm]


[mm] =\limes_{n\rightarrow\infty} \bruch{2* \wurzel{n}}{\wurzel{n}\left(\wurzel{1+\frac{1}{n}}+\wurzel{1-\frac{1}{n}}\right)} [/mm]

Jetzt noch kürzen und anschließend den Grenzwertübergang durchführen.

Grüße Patrick




> [mm]\limes_{n\rightarrow\infty} \bruch{\wurzel{n}}{\wurzel{n}(\wurzel{1}+(-\wurzel{1}))}[/mm]
> = [mm]\bruch{0}{0}[/mm]
>  
>
> Mfg Knievel


Bezug
                                
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Do 04.09.2008
Autor: Knievel

Alles klar nachdem ich dann

[mm]\limes_{n\rightarrow\infty} \bruch{2\cdot{} \wurzel{n}}{\wurzel{n}\left(\wurzel{1+\frac{1}{n}}+\wurzel{1-\frac{1}{n}}\right)} [/mm]

gekürzt habe steht dann ja erst

[mm]\bruch{2}{\wurzel{1}+\wurzel{1}}[/mm]

somit ist dann der Grenzwert 1.

Vielen Dank für deine Geduld und Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]