matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Übung
Status: (Frage) beantwortet Status 
Datum: 15:46 Mo 04.11.2013
Autor: capri

Aufgabe
Berechnen Sie die folgenden Grenzwerte:

a) [mm] \limes_{n \to \infty} n-\bruch{1}{sin(\bruch{1}{n})} [/mm]

Hallo,

Als Grenzwert müsste laut Onlinerechner 0 rauskommen, bloß ich bekomme die Rechnung nicht hin.

Ich habe als erstes den gemeinsamen Hauptnenner gebildet  und dachte mir ich wende die L´hospital regel an. aber dort störe bei mir schon die -1.

[mm] \bruch{n(sin(\bruch{1}{n})-1}{sin(\bruch{1}{n})} [/mm]

wie löse ich das Problem ist mein Ansatz falsch? oder habe ich mich nur ein bissel verrechnet?

MfG


        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Mo 04.11.2013
Autor: reverend

Hallo capri,

> Berechnen Sie die folgenden Grenzwerte:
>  
> a) [mm]\limes_{n \to \infty} n-\bruch{1}{sin(\bruch{1}{n})}[/mm]
>  
> Hallo,
>  
> Als Grenzwert müsste laut Onlinerechner 0 rauskommen, [ok]
> bloß ich bekomme die Rechnung nicht hin.
>  
> Ich habe als erstes den gemeinsamen Hauptnenner gebildet  
> und dachte mir ich wende die L´hospital regel an. aber
> dort störe bei mir schon die -1.

Wobei stört die denn???
  

> [mm]\bruch{n(sin(\bruch{1}{n})-1}{sin(\bruch{1}{n})}[/mm]
>  
> wie löse ich das Problem ist mein Ansatz falsch? oder habe
> ich mich nur ein bissel verrechnet?

Dein Ansatz ist ok.
Alternativ kannst Du die Reihenentwicklung des Sinus (also Fourierreihe um [mm] $x_0=0$) [/mm] verwenden.

Aber wende doch mal l'Hôpital an...

Im übrigen ist Dir wahrscheinlich bewusst, dass [mm] \sin{(x)}\approx{x} [/mm] für x nahe Null ist. Aber das wäre wieder das Thema Reihenentwicklung.

Grüße
reverend

Bezug
                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mo 04.11.2013
Autor: capri

kann ich $ [mm] \bruch{n(sin(\bruch{1}{n})-1}{sin(\bruch{1}{n})} [/mm] $ jetzt schon direkt l´hospital anwenden? dort steht ja noch nicht "0 durch 0" deswegen hat mich die -1 gestört. der nenner geht klar gegen 0. beim Zähler geht ja n gegen unendlich sin gegen 0 und -1 bleibt ja.

Bin gerade so ein bisschen verwirrt.

MfG

Bezug
                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Mo 04.11.2013
Autor: schachuzipus

Hallo capri,

> kann ich [mm]\bruch{n(sin(\bruch{1}{n})-1}{sin(\bruch{1}{n})}[/mm]
> jetzt schon direkt l´hospital anwenden?

Nein, nicht direkt ...

> dort steht ja noch
> nicht "0 durch 0" deswegen hat mich die -1 gestört. der
> nenner geht klar gegen 0. beim Zähler geht ja n gegen
> unendlich sin gegen 0 und -1 bleibt ja.


Jo, de l'Hôpital geht nicht, im Zähler steht "Chaos", da steht sowas wie "[mm]\infty\cdot{}0-1[/mm]" für [mm]n\to\infty[/mm]

Und [mm]\infty\cdot{}0[/mm] kann alles sein ...

Du kannst dich hier aber etwa mithilfe der Potenzreihe für den Sinus davon überzeugen, dass [mm]n\cdot{}\sin\left(1/n\right) \ \longrightarrow \ 1[/mm] für [mm]n\to\infty[/mm]

Damit hast du also doch den Fall "0/0" und kannst de l'Hôpital anwenden ...


> Bin gerade so ein bisschen verwirrt.

>

> MfG

Gruß

schachuzipus

Bezug
                                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Mo 04.11.2013
Autor: capri

Achso ^^ danke. Also geht $ [mm] n\cdot{}\sin\left(1/n\right) [/mm] \ [mm] \longrightarrow [/mm] \ 1 $ und das nochmal -1 dann habe ich "0 durch 0" stehen

wenn ich l´hospital anwende kriege ich:

[mm] sin(\bruch{1}{n}-\bruch{cos\bruch{1}{n}}{n} [/mm] durch [mm] \bruch{-cos(\bruch{1}{x})}{x^2} [/mm]

und das hilft mir auch irgendwie nicht weiter :S

MfG

Bezug
                                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Mo 04.11.2013
Autor: leduart

Hallo
offensichlich bezieht sich dein post auf keine der Antworten.  da steht doch kein L' Hopital in der ersten Antwort, in der zweiten ein anderer Vorschlag.
Gruss leduart

Bezug
                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Mo 04.11.2013
Autor: leduart

Hallo
wenn du L'Hopital anwenden willst nimm x=1/n und den GW x gegen 0
dann 2 mal L'Hopital
Gruss leduart

Bezug
                                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 04.11.2013
Autor: capri

Die Nachricht habe ich gerade erst gelesen. Also habe ich nun stehen:

[mm] \bruch{1}{x}(sin(x)-1) [/mm] durch sin(x)

L´H

[mm] -\bruch{1}{x^2}cos(x) [/mm] durch cos(x)

cos von 0 ist 1. also hätte man ja im Nenner schon 1 stehen im Zähler steht 0 also 0:1=0 stimmt das jetzt auch mit dem Rechenweg?

MfG

Bezug
                                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Mo 04.11.2013
Autor: leduart

Hallo
ich habe
[mm] \bruch{sinx-x}{x*sinx} [/mm] da stehen, also 0/0

du hast im Z erstens keine 0 und 2, seh ich deine Umformung nicht ein bzw sie ist falsch
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]