matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Korrektur/Lösung
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 31.05.2010
Autor: Tizian

Aufgabe
[mm] f_{a}(x)=-\bruch{6}{x}*(1-ln(a*x)) [/mm]

Bestimmen Sie die Grenzwerte am Rande des Definitionsbereichs.

Den Definitionsbereich bestimmten wir in einer vorigen

[mm] D_{f_{a}}= [/mm] { [mm] x|x\in\IR {\wedge}x>0 [/mm] }

[mm] \limes_{x\rightarrow\infty} \bruch{-6 * (1-ln(a*x))}{x} [/mm]

[mm] =\limes_{x\rightarrow\infty} \bruch{6*ln(a*x)-6}{x} [/mm]
-> [mm] \bruch{" {\infty} "}{"{\infty}"} [/mm]

Deswegen darf ich die Regel von L'Hospital nehmen.

[mm] \limes_{x\rightarrow\infty} \bruch{6}{x} [/mm] = 0.

Für die "andere" Seite klappt meine Vorgehensweise nicht, warum?

[mm] \limes_{x\rightarrow\ \circ} \bruch{6*ln(a*x)-6}{x} [/mm]

-> [mm] \bruch{"(-) {\infty} "}{0} [/mm] Wieder L'Hospital würde ich denken...

[mm] \limes_{x\rightarrow\ \circ} \bruch{6}{x} [/mm] = [mm] \infty [/mm]

das ist aber falsch, es müsste [mm] -\infty [/mm] rauskommen, woran liegts?


Vielen Dank für die kommenden Antworten...

LG tizian

ps/ Habe nirgendwo anders diese Frage gestellt.

        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Mo 31.05.2010
Autor: reverend

Hallo Tizian,

nnnjein...

> [mm]\limes_{x\rightarrow\infty} \bruch{-6 * (1-ln(a*x))}{x}[/mm]
>  
> [mm]=\limes_{x\rightarrow\infty} \bruch{6*ln(a*x)-6}{x}[/mm]
>  ->

> [mm]\bruch{" {\infty} "}{"{\infty}"}[/mm]
>  
> Deswegen darf ich die Regel von L'Hospital nehmen.

[ok]
  

> [mm]\limes_{x\rightarrow\infty} \bruch{6\red{a}}{x}[/mm] = 0.

Das a gehört hier schon noch hin!
  

> Für die "andere" Seite klappt meine Vorgehensweise nicht,
> warum?
>  
> [mm]\limes_{x\rightarrow\red{0}} \bruch{6*ln(a*x)-6}{x}[/mm]

Hier kannst Du ruhig 0 unter dem Limes schreiben. [mm] Te\chi [/mm] macht das automatisch kleiner.

> -> [mm]\bruch{"(-) {\infty} "}{0}[/mm] Wieder L'Hospital würde ich
> denken...

[notok]
Eben nicht. Der ist hier nicht zulässig. In Zähler und Nenner müssen Terme "gleicher Art" stehen (nicht unbedingt mit dem gleichen Vorzeichen), also beide gegen Null oder beide gegen [mm] \pm\infty [/mm] laufen.

Dies ist hier nicht der Fall, und so läuft der Zähler eben gegen [mm] -\infty [/mm] und wird noch durch eine immer kleiner werdende Zahl geteilt, so dass das Ergebnis noch größer wird. Du könntest den Grenzwert auch so umformen, dass sozusagen [mm] \text{"}-\infty*(+)\infty\text{"} [/mm] herauskommt, und das ist...

Klar?

Grüße
reverend

Bezug
                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mo 31.05.2010
Autor: Tizian

Vielen Dank für deine Antwort,

die Ableitung nach der Kettenregel von 6*ln(a*x)-6 ist trotzdem [mm] 6*\bruch{1}{ a *x}*a [/mm] = [mm] \bruch{6}{x} [/mm]

Bezug
                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mo 31.05.2010
Autor: reverend

Hallo nochmal,

> Vielen Dank für deine Antwort,
>  
> die Ableitung nach der Kettenregel von 6*ln(a*x)-6 ist
> trotzdem [mm]6*\bruch{1}{ a *x}*a[/mm] = [mm]\bruch{6}{x}[/mm]  

[bonk]
Klar doch!

Schönen Abend noch
rev

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]