matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Grenzwertbestimmung
Grenzwertbestimmung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: mit l'Hospital
Status: (Frage) beantwortet Status 
Datum: 16:59 Do 31.03.2005
Autor: Samoth

Hallo,

ich habe ein paar Aufgaben gerechnet und habe zur Musterlösung eine Frage. Die Aufgabe:

[mm] \limes_{n\rightarrow 0} (\ln(x) * \ln(1-x)) = 0 [/mm]

Begründet wird das mit:
[mm] \limes_{n\rightarrow 0} (\ln(x) * \ln(x-1)) = \limes_{n\rightarrow 0} \bruch{\ln(x-1)}{ \bruch{1}{\ln(x)}}[/mm]

also nach l'Hospital:
[mm] \limes_{n\rightarrow 0} \bruch{\ln(x-1)}{ \bruch{1}{\ln(x)}} = \limes_{n\rightarrow 0} \bruch{ -\bruch{1}{1-x}}{ -\bruch{1}{\ln(x)^2}} = \limes_{n\rightarrow 0} \bruch{x\ln(x)^2}{1-x} [/mm]

und:
[mm] \limes_{n\rightarrow 0} \bruch{x\ln(x)^2}{1-x} = 0 [/mm]....fertig.

meine Frage: kann man das hier schon folgern?
Schließlich habe ich doch jetzt den Fall 0 *  [mm] \infty [/mm] im Zähler und im Nenner 1
....ich habe den Bruch in die Form [mm] \bruch{0}{0} [/mm] gebracht und weiter l'Hospital verwendet....jedoch komme ich damit auf keinen grünen Zweig, ich komme immer wieder auf [mm] \bruch{0}{0} [/mm] ...... :(

Vielleicht kann mir jemand hier auf die Sprünge helfen....

Vielen Dank

Samoth

        
Bezug
Grenzwertbestimmung: B.-de l'H. mehrmals anwenden
Status: (Antwort) fertig Status 
Datum: 18:16 Do 31.03.2005
Autor: moudi


> Hallo,

Hallo Samoth

>  
> ich habe ein paar Aufgaben gerechnet und habe zur
> Musterlösung eine Frage. Die Aufgabe:
>  
> [mm]\limes_{n\rightarrow 0} (\ln(x) * \ln(1-x)) = 0 [/mm]
>  
> Begründet wird das mit:
>  [mm] \limes_{n\rightarrow 0} (\ln(x) * \ln(x-1)) = \limes_{n\rightarrow 0} \bruch{\ln(x-1)}{ \bruch{1}{\ln(x)}}[/mm]
>  
>  
> also nach l'Hospital:
>  [mm] \limes_{n\rightarrow 0} \bruch{\ln(x-1)}{ \bruch{1}{\ln(x)}} = \limes_{n\rightarrow 0} \bruch{ -\bruch{1}{1-x}}{ -\bruch{1}{\ln(x)^2}} = \limes_{n\rightarrow 0} \bruch{x\ln(x)^2}{1-x} [/mm]
>  
> und:
>  [mm] \limes_{n\rightarrow 0} \bruch{x\ln(x)^2}{1-x} = 0 [/mm]....fertig.
>  
> meine Frage: kann man das hier schon folgern?

Nein, die Begründung hast du unten richtig angegeben.

>  Schließlich habe ich doch jetzt den Fall 0 *  [mm]\infty[/mm] im
> Zähler und im Nenner 1
>  ....ich habe den Bruch in die Form [mm]\bruch{0}{0}[/mm] gebracht
> und weiter l'Hospital verwendet....jedoch komme ich damit
> auf keinen grünen Zweig, ich komme immer wieder auf
> [mm]\bruch{0}{0}[/mm] ...... :(

Du musst nur lange genug warten!

>  
> Vielleicht kann mir jemand hier auf die Sprünge helfen....

Wird gemacht:

[mm] $\lim_{x\to 0}\frac{\ln(1-x)}{\frac 1{\ln(x)}}=(\mathrm{B.-H.})\lim_{x\to 0}\frac{\frac{-1}{1-x}}{\frac{-1}{\ln(x)^2}\frac{1}{x}}$ [/mm]

[mm] $=\lim_{x\to 0}\frac{\ln(x)^2}{\frac{1-x}{x}}=(\mathrm{B.-H.})\lim_{x\to 0}\frac{2\ln(x)\frac 1x}{\frac{-1}{x^2}}$ [/mm]

[mm] $=\lim_{x\to 0}\frac{-2\ln(x)}{\frac 1x}=(\mathrm{B.-H.})\lim_{x\to 0}\frac{-2\frac 1x}{-\frac 1{x^2}}=\lim_{x\to 0}2x=0$ [/mm]

Erklärung: Bernoulli- de l'Hopital funktioniert nicht nur bei Grenzwerten vom Typ [mm] $\frac [/mm] 00$ sondern auch von Grenzwerten vom Typ [mm] $\frac{\infty}{\infty}$. [/mm]

mfG Moudi

>  
> Vielen Dank
>  
> Samoth

Bezug
                
Bezug
Grenzwertbestimmung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Do 31.03.2005
Autor: Samoth

Vielen Dank für deine schnelle Antwort!

Mfg
Samoth

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]