matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Grenzwertbestimmung
Grenzwertbestimmung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 So 25.01.2009
Autor: simplify

Aufgabe
Bestimme folgenden Grenzwert:
lim [mm] x\to0 \bruch{log cos(ax)}{log cos(bx)} [/mm] , mit [mm] b\not= [/mm] 0

Hallo...
ich hab bei diesem grenzwert schon einen lösungsansatz,aber der erscheint mir etwas falsch und könnte etwas hilfe gebrauchen.
meine spontane idee war,dass die cos-argumente ja jeweils null werden, also cosinus 1 wird.
nun hab ich log(1),was wiederum null wird,also dürfte der grenzwert ja nicht existieren.
ich glaube aber nicht,dass das stimmt,sonst wäre auch die bemerkung b ungleich 0 ja überflüssig.
kann es sein,dass ich da falsch rangegangen bin?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertbestimmung: de l'Hospital
Status: (Antwort) fertig Status 
Datum: 16:42 So 25.01.2009
Autor: Loddar

Hallo simplify,

[willkommenmr] !!


Deine Überlegungen klingen gut.
Es liegt hier also ein unbestimmter Ausdruck der Form [mm] $\bruch{\infty}{\infty}$ [/mm] vor.

Ein klassischer Fall für ... Doktor Bob MBHerrn de l'Hospital


Gruß
Loddar


Bezug
                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 So 25.01.2009
Autor: simplify

wieso sieht es nach [mm] \bruch{\infty}{\infty} [/mm] aus?
ist es nicht eher [mm] \bruch{0}{0}? [/mm]
kann es auch sein,dass ich die regel mehrmals anwenden muss,weil nach dem ersten mal wieder die gleiche situation entsteht.

Bezug
                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 25.01.2009
Autor: kuemmelsche

Hallo,

ja klar, dass kann durchaus passieren. Es ist auch möglich, dass aus [mm] "\bruch{0}{0}" [/mm] nach dem ersten ABleiten plötzlich [mm] "\bruch{\infty}{\infty}" [/mm] geworden ist, und erst nach dem 2. Ableiten (wenn möglich) ein brauchbares Ergebnis kommt, oder gar noch maligen Ableiten.

lg Kai

Bezug
                                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 So 25.01.2009
Autor: simplify

so...nach erstmaligen anwenden von l'hospital hab ich nun
[mm] \limes_{x\rightarrow\0} \bruch{-a tan(ax)}{-b tan(bx)} [/mm] ,also ja irgendwie wieder das gleiche problem.
ich habs auch nochmal versucht und es funktionier wieder nicht.
wann kann man denn eine konkrete aussage treffen?

Bezug
                                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 So 25.01.2009
Autor: MathePower

Hallo simplify,

> so...nach erstmaligen anwenden von l'hospital hab ich nun
> [mm]\limes_{x\rightarrow\0} \bruch{-a tan(ax)}{-b tan(bx)}[/mm]
> ,also ja irgendwie wieder das gleiche problem.
>  ich habs auch nochmal versucht und es funktionier wieder
> nicht.


Dann poste Deine Rechenschritte.


>  wann kann man denn eine konkrete aussage treffen?


Wenn Zähler und/oder Nenner einen endlichen Wert besitzen.


Gruß
MathePower

Bezug
                        
Bezug
Grenzwertbestimmung: richtig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:02 Mo 26.01.2009
Autor: Loddar

Hallo simplify!


>  ist es nicht eher [mm]\bruch{0}{0}?[/mm]

[ok] Stimmt, Du hast Recht ...


Gruß
Loddar


Bezug
                                
Bezug
Grenzwertbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Mo 26.01.2009
Autor: simplify

vielen dank.
ich denke,dass ich es jetzt richtig habe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]