matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Grenzwertbestimmung
Grenzwertbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:50 So 22.02.2015
Autor: Etschbeijer

Aufgabe
Es sei f:(0->00)->R:x-> [mm] (3*x+5)/(x^2+3*x+2) [/mm]
a) Bestimmen Sie sämmtliche Stammfunktionen von f.
b) Bestimmen Sie falls existent [mm] \integral_{0}^{00}{f(x) dx} [/mm] für f(x) dx

Hallo und vielen dank für die Hilfe im voraus :-)
Ich habe die Stammfunktion, welche im Teil a ist errechne.
Es sollte 2ln(x+1)+ln(x+2)+c sein.
Probleme bereitet mir der Aufgabenteil b.
Soll ich den Grenzwert von der Stammfunktion überprüfen und wie überprüfe ich dessen Existenz?
mfg,
Etschbeijer
p.s. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 So 22.02.2015
Autor: Al-Chwarizmi


> Es sei f:(0->00)->R:x-> [mm](3*x+5)/(x^2+3*x+2)[/mm]     [haee]

Ich versuche dies mal ins Reine zu schreiben:


      $\ f:\ \  [mm] [\,0 [/mm] , [mm] \infty\, [/mm] )\  [mm] \to\ \IR\ [/mm] \ [mm] ;\quad [/mm] x\    [mm] \mapsto\ \frac{3*x+5}{x^2+3*x+2}$ [/mm]

( Das Unendlichkeitssymbol schreibt man als   \infty  )

>  a) Bestimmen Sie sämtliche Stammfunktionen von f.
>  b) Bestimmen Sie falls existent [mm]\integral_{0}^{\infty}{f(x) dx}[/mm]

>  Ich habe die Stammfunktion, welche im Teil a verlangt ist, errechnet.
>  Es sollte 2ln(x+1)+ln(x+2)+c sein.    [ok]

>  Probleme bereitet mir der Aufgabenteil b.
>  Soll ich den Grenzwert von der Stammfunktion überprüfen
> und wie überprüfe ich dessen Existenz?


Hallo,

zuerst mal wäre es sehr sinnvoll, die Korrektheit der
Stammfunktion durch Ableiten zu überprüfen !

Ferner ist wichtig, den Gültigkeitsbereich genau zu über-
prüfen:  Gilt alles wirklich für alle x mit [mm] x\ge0 [/mm] ?

Um die Existenz des uneigentlichen Integrals zu
überprüfen, genügen dann ganz elementare Kenntnisse
über die  ln - Funktion.

LG  ,   Al-Chwarizmi

Bezug
        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 So 22.02.2015
Autor: fred97

Zu b):

es ist zu entscheiden, ob

[mm] \limes_{a \rightarrow\infty}\integral_{0}^{a}{f(x) dx} [/mm]

existiert oder nicht.

FRED

Bezug
                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Mo 23.02.2015
Autor: Etschbeijer

K laso bestimme ich das Integral über [mm] (2ln(\infty+1)+ln(\infty+2)+c)-(2ln(0+1)+ln(0+2)+c) [/mm]
Das ganze strebt gegen nichts und demnach gibt es keinen Grenzwert richtig?
p.s. vielen dank für die schnelle Hilfe :-)
mfg,
Etschbeijer

Bezug
                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mo 23.02.2015
Autor: DieAcht

Hallo Etschbeijer und [willkommenmr]!


> K laso bestimme ich das Integral über

Diese Redewendung würde ich nicht verwenden.

> [mm](2ln(\infty+1)+ln(\infty+2)+c)-(2ln(0+1)+ln(0+2)+c)[/mm]

Du musst genauer arbeiten. Es gilt:

      [mm] \lim_{a\to\infty}\int_{0}^{a}f(x)\mathrm{d}x=\lim_{a\to\infty}\left(2\ln(a+1)+\ln(a+2)-2\ln(1)-\ln(2)\right)=\lim_{a\to\infty}\left(2\ln(a+1)+\ln(a+2)\right)-\ln(2). [/mm]

> Das ganze strebt gegen nichts

Was heißt denn "gegen nichts"?

> und demnach gibt es keinen Grenzwert richtig?

Begründung?


Gruß
DieAcht

Bezug
                                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 23.02.2015
Autor: Etschbeijer

Da die beiden Integrale nicht konvergieren existiert kein Grenzwert.
Ist das so korrekt? Wenn nicht bräuchte ich  etwas Hilfe...
mfg,
Etschbeijer

Bezug
                                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 23.02.2015
Autor: fred97


> Da die beiden Integrale nicht konvergieren existiert kein
> Grenzwert.
>  Ist das so korrekt?

Nein.

Begründe exakt, warum

[mm] \lim_{a\to\infty}\left(2\ln(a+1)+\ln(a+2)\right)-\ln(2) [/mm]

in [mm] \IR [/mm] nicht existiert.

FRED

> Wenn nicht bräuchte ich  etwas
> Hilfe...
>  mfg,
>  Etschbeijer


Bezug
                                                
Bezug
Grenzwertbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Mo 23.02.2015
Autor: Etschbeijer

Ah k vielen dank das war mein Hauptproblem, ich wusste nicht das unendlich kein Teil der reellen Zahlen ist... tut mir leid und ja ich schäme mich dafür :-(
Vielen dank noch einmal für die Hilfe.
Mfg,
Etschbeijer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]