matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Grenzwertberechnung
Grenzwertberechnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 11:50 Mi 09.02.2005
Autor: Julinchen

Hallo,

unser Matheprofessor geht leider davon aus, dass wir Grenzwerte berechenen, da wir das schon in der Schule gehabt haben sollen. Ich habe das zwar schonmal gemacht, aber kann mich da nur noch vage dran erinnern.

Wenn ich z.B. den Grenzwert von [mm]\bruch{3n^2+2n+1}{4n^3-1}[/mm], dann würde ich spontan erstmal durch [mm]n^2[/mm] teilen. Aber dann habe ich ja immernoch n's in meiner Gleichung, wie komm ich dann nochmal genau auf den Grenzwert.

Vielleicht kann ja einer von euch meine Erinnerungslücken wieder etwas schliessen.

Danke!!
Gruss
Julia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertberechnung: Durch höchste Potenz kürzen
Status: (Antwort) fertig Status 
Datum: 12:13 Mi 09.02.2005
Autor: Loddar

Hallo Julia!


[mm]\bruch{3n^2+2n+1}{4n^3-1}[/mm],

> dann würde ich spontan erstmal durch [mm]n^2[/mm] teilen.

Der Ansatz ist nicht schlecht, aber nicht ganz konsquent.


Kürze durch die höchste auftretende Potenz, also hier [mm] $n^3$. [/mm]
Dann ensteht:

[mm] $\bruch{3n^2+2n+1}{4n^3-1}$ [/mm]

$= \ [mm] \bruch{\bruch{3n^2}{n^3} + \bruch{2n}{n^3} + \bruch{1}{n^3}}{\bruch{4n^3}{n^3} - \bruch{1}{n^3}}$ [/mm]

$= \ [mm] \bruch{\bruch{3}{n} + \bruch{2}{n^2}+\bruch{1}{n^3}}{4 - \bruch{1}{n^3}}$ [/mm]


Kommst Du nun für den Grenzwert alleine weiter ?

Gruß
Loddar


Bezug
                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Mi 09.02.2005
Autor: Julinchen

Hallo,

tja nun eine wohl etwas blöde Frage, aber dann ergibt sich doch der Grenzwert 0, oder??
Nur eine Begründung/Beweis habe ich nicht.

LG
Julia

Bezug
                        
Bezug
Grenzwertberechnung: richig!
Status: (Antwort) fertig Status 
Datum: 15:32 Mi 09.02.2005
Autor: maetty

Hey!

Richig, als Grenzwert ergibt sich 0!

Guck dir einfach mal alle Glieder des Terms an:

[mm]\bruch {3}{n}[/mm]  ergibt für [mm] \limes_{n\rightarrow\infty}\bruch {3}{n} [/mm]  = 0

Gehst du dies nun weiter durch, siehst du, dass der nenner gegen 4 läuft und der zähler gegen 0, somit läuft also, wie du schon richtig vermutet hast, der ganze term gegen 0! Und das sowohl für [mm] +\infty [/mm] also auch [mm] -\infty. [/mm]



-mätty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]