matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Grenzwertberechnung
Grenzwertberechnung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mi 03.10.2007
Autor: DaniTwal

Aufgabe
     lim               [mm] 2x^2+x [/mm] / 2x-1
[mm] x->\infty [/mm]

Hallo alle zusammen!
Ich hab folgende Frage:

Würde man nun den Grenzwert bestimmen, so müsste man [mm] \infty [/mm] rausbekommen.. ( habe ich leider nicht geschafft, da ich gewohnt war immer eine konstante zu erhalten, gegen die der graph im [mm] \infty [/mm] konvergierte..)
beim betrachten des graphen in einem zeichenprogramm, fällt mir aber auf, dass er gegen eine funktion ( wahrscheinlich f(x)= x+1) strebt?! heißt es also, dass bei der grenzwertberechnung eine funktion rauskommen müsste?
ich schreibe morgen die lk-klausur, daher bitte ich, dass ihr mir so schnell wie möglich helft..
Danke im voraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mi 03.10.2007
Autor: schachuzipus

Hallo DaniTwal,

zunächst mal ist der Grenzwert - so er existiert - stets eine (reelle) Zahl

(also insbesondere KEINE Funktion)

Oder du hast die sog. "uneigentliche" Grenzwerte [mm] $\pm\infty$ [/mm]

In deinem Falle ist die Funktion [mm] $f(x)=\frac{2x^2+x}{2x-1}$ [/mm]

Hier kannst du direkt argumentieren, dass der Zählergrad größer ist als der Nennergrad (also die höchste Potenz von $x$ ist im Zähler (=2) größer als die höchste Potenz von $x$ im Nenner (=1) ist) und damit der Bruch gegen [mm] $\pm\infty$ [/mm] divergiert. Da auch die Vorzeichen vor den höchsten Potenzen von $x$ dieselben sind (+), divergiert die Funktion für [mm] $x\to\infty$ [/mm] gegen [mm] $+\infty$ [/mm]

Rechnerisch kannst du ja mal $2x$ im Zähler und Nenner ausklammern, kürzen und dann [mm] $x\to\infty$ [/mm] laufen lassen


In deinem zweiten Schritt hast du die Asymptote von $f$ bestimmt, also die Funktion  (bzw. hier Gerade), der sich $f$ für riesige $x$ beliebig nahe anschmiegt.

Das geht rechnerisch per Polynomdivision [mm] $(2x^2+x):(2x-1)=x+1+\frac{1}{2x-1}$ [/mm]

Und hier siehst du, dass wenn [mm] $x\to\infty$ [/mm] geht, dass der letzte Term [mm] $\frac{1}{2x-1}$ [/mm] gegen $0$ geht und dass sich $f$ also für [mm] $x\to\infty$ [/mm] beliebig nahe an die Gerade $y=x+1$ anschmiegt.


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]