matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Grenzwert zeigen
Grenzwert zeigen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert zeigen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:29 Mo 22.05.2006
Autor: Doreen

Aufgabe
Zeigen Sie, dass für alle  [mm] \alpha \in \IR [/mm] gilt:

[mm] \limes_{x\rightarrow\infty} \bruch{e^{x}}{x^{a}} [/mm] =  [mm] \infty [/mm]

dies bedeutet anschaulich, dass die Exponentialfkt. [mm] e^{x} [/mm] für x [mm] \to \infty [/mm] schneller wächst als jede Potenzfkt.

Hallo an alle,

ich bräuchte ein wenig Hilfestellung zu der obigen Aufgabe...

Mit der Anwendung von l'Hospital...

  [mm] \limes_{x\rightarrow\infty} \bruch{e^{x}}{ \alpha x^{a-1}} [/mm]

wenn ich mir da den Grenzwert anschaue, gehts  [mm] \infty [/mm] geteilt durch  [mm] \infty [/mm]
nochmal l'Hosptial... das selbe...

Wie kann man dass jetzt zeigen, dass es nach  [mm] \infty [/mm] geht...

Vielen Dank für Hilfe im Voraus
Gruß Doreen

Diese Frage habe ich in keinen anderem Forum gestellt
        
Grenzwert zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mo 22.05.2006
Autor: metzga

Hallo Doreen,

du musst die Regel von l'Hospital a-mal anwenden.
Dann kommst du auf, da der Grenzwert
[mm]\limes_{x\rightarrow\infty} \bruch{e^{x}}{ a!}[/mm]
existiert gilt:
[mm]\limes_{x\rightarrow\infty} \bruch{e^{x}}{ x^{a}}=\limes_{x\rightarrow\infty} \bruch{e^{x}}{ a!}= \infty[/mm]

MfG metzga
                
Grenzwert zeigen: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Mo 22.05.2006
Autor: Roadrunner

Hallo metzga!


Eine kleine Korrektur / Anmerkung: da ja gelten soll $a \ [mm] \in [/mm] \ [mm] \red{\IR}$ [/mm] , muss man de l'Hospital solange anwenden bis für den Exponenten im Nenner gilt $< \ 1$ .


Gruß vom
Roadrunner

Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]