matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert von Wurzelfolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwert von Wurzelfolgen
Grenzwert von Wurzelfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von Wurzelfolgen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:26 Do 04.12.2008
Autor: mighttower2

Aufgabe
Bestimmen Sie den Grenzwert.

Folgende Folgen bereiten mir Probleme:
-[mm](\wurzel{n^3+6}-\wurzel{n^3+2})[/mm]
-[mm](\wurzel[n]{4n^4+3n})[/mm]
Könnte mir jemand mal einen Tip geben was ich nutzen kann um hier einen Anfang zufinden?
Finde da einfach keinen Ansatz. Hab es mit dem Einschließungssatz versucht aber komme damit nicht ans Ziel.
Vielen Danke



        
Bezug
Grenzwert von Wurzelfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Do 04.12.2008
Autor: XPatrickX

Hallo!!

> Bestimmen Sie den Grenzwert.
>  Folgende Folgen bereiten mir Probleme:
>  -[mm](\wurzel{n^3+6}-\wurzel{n^3+2})[/mm]

Hier müsste der Trick mit der 3.Binomischen Formel funktionieren. Erweitere also mit [mm] (\wurzel{n^3+6}\red{+}\wurzel{n^3+2}) [/mm]


>  -[mm](\wurzel[n]{4n^4+3n})[/mm]

Diese Folge kannst du tatsächlich einschachteln. Schätze dazu einfach großzügig ab. Ich hoffe du weißt bereits, dass z.B. [mm] \wurzel[n]{10n^{15}}\to [/mm] 1 für [mm] n\to \infty. [/mm]


>  Könnte mir jemand mal einen Tip geben was ich nutzen kann
> um hier einen Anfang zufinden?
>  Finde da einfach keinen Ansatz. Hab es mit dem
> Einschließungssatz versucht aber komme damit nicht ans
> Ziel.
>  Vielen Danke
>  

Gruß Patrick  



Bezug
                
Bezug
Grenzwert von Wurzelfolgen: Antwort/Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:21 Fr 05.12.2008
Autor: mighttower2

Ok, mit deiner Hilfe (vielen dank dafür) komme ich auf:
[mm](\wurzel{n^3+6}-\wurzel{n^3+2})=\bruch{(\wurzel{n^3+6}-\wurzel{n^3+2})*(\wurzel{n^3+6}+\wurzel{n^3+2})}{(\wurzel{n^3+6}+\wurzel{n^3+2})}=\bruch{(n^3+6)-(n^3+2)}{(\wurzel{n^3+6}+\wurzel{n^3+2})}=\bruch{4}{(\wurzel{n^3+6}+\wurzel{n^3+2})}\rightarrow 0 [/mm]
Ist das so richtig?
Für die andere komme ich auf:
[mm]1=\wurzel[n]{4n^4}<\wurzel[n]{4n^4+3n}<\wurzel[n]{8n^4}=1[/mm]
Kann man das so sagen?
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]