matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisGrenzwert von Reihen bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Grenzwert von Reihen bestimmen
Grenzwert von Reihen bestimmen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von Reihen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:06 Sa 07.06.2008
Autor: Riesenradfahrrad

Aufgabe
Beweise:

[m]\sum_{k=0}^\infty\frac{k^2}{k!}=2e[/m]

[m]\sum_{k=0}^\infty\frac{k^3}{k!}=5e[/m]

[m]\sum_{k=0}^\infty\frac{k^4}{k!}=15e[/m]

Tipp: Betrachte die Potenzreihenentwicklung von  [m]h(z)=e^{e^z}[/m]

Hallöle,

ich bins mal wieder..

Hänge fest an obiger Aufgabe. Meine bisherigen Versuche gingen in Richtung die Potenzreihe von [m]h(z)[/m] auf zuschreiben und den Wert für [m]e^z=\ln(2e)[/m] einzusetzen (der Wert bei dem h den Wert 2e ausgibt) und zu versuchen, daraus den Ausdruck [m]k^2[/m] zu bekommen. Hat leider bisher nicht so wirklich hingehauen.

Wär super, wenn mir jemand unter die Arme greifen kann.

Vielen Dank im Voraus,
Lorenz

        
Bezug
Grenzwert von Reihen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Sa 07.06.2008
Autor: Somebody


> Beweise:
>  
> [m]\sum_{k=0}^\infty\frac{k^2}{k!}=2e[/m]
>  
> [m]\sum_{k=0}^\infty\frac{k^3}{k!}=5e[/m]
>  
> [m]\sum_{k=0}^\infty\frac{k^4}{k!}=15e[/m]
>  
> Tipp: Betrachte die Potenzreihenentwicklung von  
> [m]h(z)=e^{e^z}[/m]
>  Hallöle,
>  
> ich bins mal wieder..
>  
> Hänge fest an obiger Aufgabe. Meine bisherigen Versuche
> gingen in Richtung die Potenzreihe von [m]h(z)[/m] auf zuschreiben
> und den Wert für [m]e^z=\ln(2e)[/m] einzusetzen (der Wert bei dem
> h den Wert 2e ausgibt) und zu versuchen, daraus den
> Ausdruck [m]k^2[/m] zu bekommen. Hat leider bisher nicht so
> wirklich hingehauen.
>  
> Wär super, wenn mir jemand unter die Arme greifen kann.

Auf den ersten Blick kann ich mit dem Tipp nicht gleich was anfangen: dies liegt vermutlich daran, dass ich für die Lösung dieser Aufgabe bereits unter einer "fixen Idee" leide; und zwar der folgenden: es ist doch

[mm]x\cdot \left(x\cdot \left(\mathrm{e}^x\right)'\right)'=\sum_{k=0}^\infty \frac{k^2}{k!}x^k[/mm]

wie gliedweises Differenzieren der jeweiligen Reihenentwicklung, beginnend mit [mm] $\mathr{e}^x=\sum_{k=0}^\infty \frac{1}{k!}x^k$, [/mm] und dann wieder mit $x$ Multiplizieren zeigt. Nun ist aber auch [mm] $x\cdot \left(x\cdot \left(\mathrm{e}^x\right)'\right)'=x\cdot(1+x)\cdot\mathrm{e}^x$, [/mm] also erhält man insgesamt [mm] $x\cdot(1+x)\cdot \mathrm{e}^x=\sum_{k=0}^\infty\frac{k^2}{k!}x^k$ [/mm] und daher, durch Einsetzen von $1$ für $x$, die Richtigkeit der Aussage [mm] $\sum_{k=0}^\infty \frac{k^2}{k!}=2\mathrm{e}$. [/mm]
Analog verfährt man bei den weiteren Aussagen (weiter Ableiten nach $x$ und dann wieder Multiplizieren mit $x$).
Kurz: der Wert der Reihe [mm] $\sum_{k=0}^\infty \frac{k^n}{k!}$ [/mm] ergibt sich aus der $n$-maligen Anwendung des "Operators" [mm] $x\frac{d}{dx}$ [/mm] auf (die Reihenentwicklung von) [mm] $\mathrm{e}^x$ [/mm] und Einsetzen von $1$ für $x$.

Bezug
        
Bezug
Grenzwert von Reihen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Sa 07.06.2008
Autor: MathePower

Hallo Riesenradfahrrad,

> Beweise:
>  
> [m]\sum_{k=0}^\infty\frac{k^2}{k!}=2e[/m]
>  
> [m]\sum_{k=0}^\infty\frac{k^3}{k!}=5e[/m]
>  
> [m]\sum_{k=0}^\infty\frac{k^4}{k!}=15e[/m]
>  
> Tipp: Betrachte die Potenzreihenentwicklung von  
> [m]h(z)=e^{e^z}[/m]
>  Hallöle,
>  
> ich bins mal wieder..
>  
> Hänge fest an obiger Aufgabe. Meine bisherigen Versuche
> gingen in Richtung die Potenzreihe von [m]h(z)[/m] auf zuschreiben
> und den Wert für [m]e^z=\ln(2e)[/m] einzusetzen (der Wert bei dem
> h den Wert 2e ausgibt) und zu versuchen, daraus den
> Ausdruck [m]k^2[/m] zu bekommen. Hat leider bisher nicht so
> wirklich hingehauen.
>  
> Wär super, wenn mir jemand unter die Arme greifen kann.

Es ist

[mm]e^{e^{x}}=\summe_{k=0}^{\infty}\bruch{\left(e^{x}\right)^{k}}{k!}=\summe_{k=0}^{\infty}\bruch{e^{kx}}{k!}[/mm]

Dies n-mal abgeleitet ergibt dann:

[mm]\bruch{d^{n}}{dx^{n}}\left(e^{e^{x}}\right)=\summe_{k=0}^{\infty}\bruch{k^{n}*e^{kx}}{k!}[/mm]

>  
> Vielen Dank im Voraus,
>  Lorenz


Gruß
MathePower

Bezug
                
Bezug
Grenzwert von Reihen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 So 08.06.2008
Autor: Riesenradfahrrad

Herzlichen Dank an Somebody und Mathpower für dei schnelle und hilfreiche Reaktion!

Greez,
Lorenz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]