matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwert von Reihen
Grenzwert von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von Reihen: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 14:44 Di 12.10.2010
Autor: arcturius

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: (Dr ASK MATH FORUM)

http://mathforum.org/dr/math/

Die folgende Reihe


$ [mm] \blue{\summe_{x=1}^{\infty}[\sin{(\ln{x})}]\cdot{}\left[\bruch{1}{x^{0,8}}-\bruch{1}{x^{0,2}}-\bruch{1}{(x+1)^{0,8}}+\bruch{1}{(x+1)^{0,2}}\right]} [/mm] $



ist konvergent (Nachweis: Limit Comparison Test).
Aber wie lässt sich formal zeigen, dass der Grenzwert ungleich Null ist? Die Wolfram Computational Engine
deutet an (Berechnug bis n= 600) , dass der Grenzwert zwischen Null und 1 liegt.

        
Bezug
Grenzwert von Reihen: Hinweis auf Formel-Ed.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 Di 12.10.2010
Autor: statler

Hallo und [willkommenmr]!

Könntest du deine Frage eventuell mit Hilfe des Formel-Editors oder dir bekannter LaTeX-Befehle etwas anhübschen?

Gruß aus HH-Harburg
Dieter

Bezug
        
Bezug
Grenzwert von Reihen: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Di 12.10.2010
Autor: Loddar

Hallo Acturius,


[willkommenmr] !!


Bitte unterlasse in Zukunft derartige Doppelposts. Diese Frage hast Du bereits hier gestellt.


Gruß
Loddar




Bezug
        
Bezug
Grenzwert von Reihen: Schluss hier. Bitte.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:17 Di 12.10.2010
Autor: reverend

Hallo arcturius,

bitte lasse diesen Thread (diese Diskussion) endlich in Frieden ruhen.

Etwaige Präzisierungen, Nachfragen etc. stelle dort, wo Deine Frage noch einmal bearbeitet wird: hier. Genau darum wollen wir keine Doppelposts: man verliert den Überblick, wer eigentlich wo was beantwortet.

Ich versuche mal, Deine letzten Beiträge auch dorthin zu transportieren.
Darin bin ich nicht so geübt, gönne mir also ein paar Fehlversuche.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]