matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwert von Reihen
Grenzwert von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Di 21.07.2009
Autor: Tobus

Hallo,
ich habe eine Frage zur Konvergenz von Reihen.

Bei gegebenen Reihen kann ich zum Beispiel durch das Quotientenkriterium testen, ob die Reihe konvergent ist oder nicht. Über den grenzwert kann ich hier ja noch keine Aussage machen.

In meinem Skript steht nun folgendes:
"Ist in einer Umgebung von [mm] x=x_{0} [/mm] das Quotientenkriterium für eine Funktionenreihe mit stetig differenzierbarem [mm] \delta(x) [/mm] erfüllt, so kann diese gliedweise differenziert und integriert werden z.B.

Berechnung der Summe s(x) der Reihe:
s(x) = [mm] \summe_{k=1}^{\infty} k*x^{k} [/mm]


[mm] \integral_{}^{}{\bruch{s(x)}{x} dx} [/mm] = [mm] \integral_{}^{}{\summe_{k=1}^{\infty} k*x^{k-1} dx} [/mm] = [mm] \bruch{1}{1-x} [/mm] +c

[mm] \bruch{s(x)}{x} [/mm] = [mm] \bruch{1}{(1-x)^{2}} [/mm]

[mm] s(x)=\bruch{x}{(1-x)^{2}} [/mm]

Nun zu den Fragen:
- Kann ich nun den Grenzwert einer Reihe bestimmen, indem ich beide Seiten integriere ?
- Woher kommt das Quadrat bei [mm] \bruch{s(x)}{x} [/mm] = [mm] \bruch{1}{(1-x)^{2}} [/mm] das ist mir überhaupt nicht klar

VIELEN DANK für die Hilfe !!

        
Bezug
Grenzwert von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Di 21.07.2009
Autor: fencheltee


> Hallo,
>  ich habe eine Frage zur Konvergenz von Reihen.
>  
> Bei gegebenen Reihen kann ich zum Beispiel durch das
> Quotientenkriterium testen, ob die Reihe konvergent ist
> oder nicht. Über den grenzwert kann ich hier ja noch keine
> Aussage machen.
>  
> In meinem Skript steht nun folgendes:
>  "Ist in einer Umgebung von [mm]x=x_{0}[/mm] das Quotientenkriterium
> für eine Funktionenreihe mit stetig differenzierbarem
> [mm]\delta(x)[/mm] erfüllt, so kann diese gliedweise differenziert
> und integriert werden z.B.
>  
> Berechnung der Summe s(x) der Reihe:
>  s(x) = [mm]\summe_{k=1}^{\infty} k*x^{k}[/mm]

hier stört ja der vorfaktor k, ansonsten wärs ja eine geometrische reihe!
um das weg zu bekommen bedient man sich eines tricks: ausklammern eines x:
[mm] s(x)=x*\underbrace{\summe_{k=1}^{\infty} k*x^{k-1}}_{=f(x)}=x*f(x) [/mm]
dieses f(x) integriert man nun, das k verschwindet, und den grenzwert kann man durch die geometrische reihe bestimmen:
[mm] F(x)=\integral_{}^{}{\summe_{k=1}^{\infty} k*x^{k-1}}=\summe_{k=1}^{\infty} \frac{k}{\red{k}}*x^{k-1\red{+1}}+c=\summe_{k=1}^{\infty}x^{k}+c=\frac{1}{1-x}+c [/mm] nun haben wir die explizite form bzw. grenzwert von F(x), wir müssen nun aber wieder auf f(x) durch differenzieren:
[mm] F'(x)=(\frac{1}{1-x}+c)'=\frac{1}{(1-x)^2}=f(x) [/mm]
die ausgangsformel war aber s(x)=x*f(x), also letzte gleichung noch mit x multiplizieren:
[mm] s(x)=f(x)*x=\frac{x}{(1-x)^2} [/mm]

>  
>
> [mm]\integral_{}^{}{\bruch{s(x)}{x} dx}[/mm] =
> [mm]\integral_{}^{}{\summe_{k=1}^{\infty} k*x^{k-1} dx}[/mm] =
> [mm]\bruch{1}{1-x}[/mm] +c
>  
> [mm]\bruch{s(x)}{x}[/mm] = [mm]\bruch{1}{(1-x)^{2}}[/mm]
>  
> [mm]s(x)=\bruch{x}{(1-x)^{2}}[/mm]
>  
> Nun zu den Fragen:
>  - Kann ich nun den Grenzwert einer Reihe bestimmen, indem
> ich beide Seiten integriere ?

die frage verstehe ich nicht ganz, evtl klärt sich die ja durch die antwort

>  - Woher kommt das Quadrat bei [mm]\bruch{s(x)}{x}[/mm] =
> [mm]\bruch{1}{(1-x)^{2}}[/mm] das ist mir überhaupt nicht klar

siehe differenzieren vorletzter schritt ;-)

>  
> VIELEN DANK für die Hilfe !!

mfg tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]