matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert rekursive Vorschrift
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Grenzwert rekursive Vorschrift
Grenzwert rekursive Vorschrift < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert rekursive Vorschrift: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:43 Di 28.04.2015
Autor: Arvi-Aussm-Wald

Aufgabe
 



Hallo zusammen, 

da meine Mathevorlesungsungen sind schon einige Zeit her sind und ich seit dem mit Folgen und Grenzwerten wenig zu tun habe, zähle ich auf euch!

Die "Aufgabe" ist im Grunde relativ leicht:
Es soll zu einem Anfangswert pro Zeiteinheit ein Wert addiert und dieser neue Wert um einen bestimmten Prozentsatz verringert werden.

Also Mathematisch:
[mm] x_{i+1}=k( \Delta x+ x_{i})[/mm]
[mm] x_{i+1}=k( \Delta x+ k( \Delta x+ x_{i-1}))[/mm]
[mm] x_{i+1}=k( \Delta x+ k( \Delta x+ (k( \Delta x+ k( \Delta x+ x_{i-2})))))[/mm]

dabei ist [mm] \Delta x[/mm] der zu addierende Wert (zunächst soll dieser konstant sein) und k der entsprechende Abnahmefaktor (k<1).

Im Grunde ist es kein Problem davon, beispielweise mit Excel, den Grenzwert zu ermitteln, jedoch hätte ich das ganze irgendwie gerne ein bischen allgemeiner und mathematischer betrachtet. Am liebsten wäre mir natütrlich eine geschlossene Funktion, bei der ich dann mit einer Grenzwertbetrachtung weiter kommen würde. Die einzige "Idee", die ich im Moment jedoch habe eine solche Funktion zu finden, basiert darauf das Ganze als Summe darzustellen und nicht in dieser "unschönen" rekursiven Form. Jedoch hapert es daran bereits.

Danke für eure Hilfe.  

        
Bezug
Grenzwert rekursive Vorschrift: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Di 28.04.2015
Autor: chrisno

Ich schreibe das mal um. Es gibt einen Startwert [mm] $x_0$ [/mm]
$ [mm] x_{1}=k( \Delta [/mm] x+ [mm] x_{0}) [/mm] $
$ [mm] x_{2}=k( \Delta [/mm] x+ [mm] x_{1}) [/mm] = k( [mm] \Delta [/mm] x+ k( [mm] \Delta [/mm] x+ [mm] x_{0})) [/mm] $
$ [mm] x_{3}=k( \Delta [/mm] x+ [mm] x_{2}) [/mm] = k( [mm] \Delta [/mm] x+ k( [mm] \Delta [/mm] x+ [mm] x_{1})) [/mm] = k( [mm] \Delta [/mm] x+ k( [mm] \Delta [/mm] x+k( [mm] \Delta [/mm] x+ [mm] x_{0}) [/mm] ))$

In der nächsten Version:
$ [mm] x_1 [/mm] = k [mm] \cdot \Delta [/mm] x + k [mm] \cdot x_0 [/mm] $
$ [mm] x_2 [/mm] = k [mm] \cdot \Delta [/mm] x + k [mm] \cdot x_1 [/mm] = k [mm] \cdot \Delta [/mm] x + [mm] k^2 \cdot \Delta [/mm] x + [mm] k^2 \cdot x_0 [/mm] = (k + [mm] k^2) \Delta [/mm] x + [mm] k^2 x_0$ [/mm]
$ [mm] x_3$ [/mm] und [mm] $x_n$ [/mm] überlasse ich Dir.

Bezug
                
Bezug
Grenzwert rekursive Vorschrift: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:30 Di 28.04.2015
Autor: Arvi-Aussm-Wald

Das ergibt dann
[mm] x_{n}= k^n x_{0} + \Delta x \sum_{i=1}^{n} k^i [/mm]
und für n gegen unendlich strebt das gegen [mm] \frac{ \Delta x}{1-k}[/mm] .

Das scheint auch mit den Excel-Werten zu passen.

Danke Dir!

 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]