matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert mit l'Hospital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert mit l'Hospital
Grenzwert mit l'Hospital < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert mit l'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Do 11.02.2010
Autor: squeedi

Aufgabe
Berechnen Sie den Grenzwert:

[mm] \limes_{x\rightarrow\ 0} \left(x^{2} + e^{x^{2}}\right)^{\bruch{1}{x^{2}}} [/mm]

Hallo!

Mal wieder häng ich bei den Grenzwerten fest. Ich bin folgendermaßen hier ran gegangen:

[mm] \limes_{x\rightarrow\ 0} x^{\bruch{2}{x^{2}}} [/mm] + [mm] e^{\bruch{x^{2}}{x^{2}}} [/mm]

[mm] \limes_{x\rightarrow\ 0} x^{\bruch{2}{x^{2}}} [/mm] + [mm] e^{1} [/mm]

hier bleib ich nun stecken. ist die lösung jetzt e oder ist die gleichung nicht lösbar, weil man im exponent von x durch 0 teilt?
oder lieg ich grad ganz falsch?

gruß squeedi



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert mit l'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Do 11.02.2010
Autor: schachuzipus

Hallo Christian,

> Berechnen Sie den Grenzwert:
>  
> [mm]\limes_{x\rightarrow\ 0} \left(x^{2} + e^{x^{2}}\right)^{\bruch{1}{x^{2}}}[/mm]
>  
> Hallo!
>  
> Mal wieder häng ich bei den Grenzwerten fest. Ich bin
> folgendermaßen hier ran gegangen:
>  
> [mm]\limes_{x\rightarrow\ 0} x^{\bruch{2}{x^{2}}}[/mm] +  [mm]e^{\bruch{x^{2}}{x^{2}}}[/mm]

Was genau machst du hier und warum? Du kannst doch nicht einfach summandenweise exponieren ...

Da graust es mir ja.

Demnach würdest du auch sagen: [mm] $(a+b)^2=a^2+b^2$ [/mm] ??

Das kann ja in der Schule mal passieren, aber im Studium???

Mannomann ...


In der Aufgabenstellung steht doch schon der Hinweis "de l'Hôpital"

Für $a>0$ ist [mm] $a^b=e^{\ln\left(a^b\right)}=e^{b\cdot{}\ln(a)}$ [/mm]

Hier kannst du also schreiben:

[mm] $\left(x^2+e^{x^2}\right)^{\frac{1}{x^2}} [/mm] \ = \ [mm] e^{\frac{1}{x^2}\cdot{}\ln\left(x^2+e^{x^2}\right)}$ [/mm]

Nun beachte, dass die Exponentialfunktin stetig ist, dass also gilt:

[mm] $\lim\limits_{x\to x_0}e^{f(x)}=e^{\lim\limits_{x\to x_0}f(x)}$ [/mm]

Greife dir also den Exponenten heraus und schaue, was der für [mm] $x\to [/mm] 0$ so treibt.

Dazu kannst du die Regel von de l'Hôpital benutzen, denn bei direktem Grenzübergang erhältst du den unbestimmten Ausdruck [mm] $\frac{0}{0}$ [/mm]

>  
> [mm]\limes_{x\rightarrow\ 0} x^{\bruch{2}{x^{2}}}[/mm] + [mm]e^{1}[/mm]
>  
> hier bleib ich nun stecken. ist die lösung jetzt e oder
> ist die gleichung nicht lösbar, weil man im exponent von x
> durch 0 teilt?
>  oder lieg ich grad ganz falsch?
>  
> gruß squeedi
>  

LG

schachuzipus

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Grenzwert mit l'Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Do 11.02.2010
Autor: squeedi

autsch, mehr kann man da wohl nich sagen.....

danke für den Hinweis, habe als Lösung [mm] e^{2} [/mm]  .

gruß squeedi

Bezug
                        
Bezug
Grenzwert mit l'Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Do 11.02.2010
Autor: fred97


> autsch, mehr kann man da wohl nich sagen.....
>  
> danke für den Hinweis, habe als Lösung [mm]e^{2}[/mm]  .

Stimmt

FRED

>  
> gruß squeedi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]