matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert gegeben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Grenzwert gegeben
Grenzwert gegeben < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert gegeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Do 30.09.2010
Autor: kushkush

Aufgabe
1. Sei [mm] $(a_{n})_{n \in \IN}$ [/mm] eine Folge in $ [mm] \IR$. [/mm] Wir nehmen an ,dass 13 Grenzwert der Folge [mm] $(a_{n})_{n\in \IN}$ [/mm] ist. Zeige, dass 37 nicht Grenzwert der Folge [mm] $(a_{n})_{n \in \IN}$ [/mm] ist.

Hi,


Ich habe leider keinen Plan wie ich das lösen kann! Hat mir jemand eventuell einige Hinweise dazu?


Dankeschön


Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
Grenzwert gegeben: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Do 30.09.2010
Autor: Karl_Pech

Hallo kushkush,


Nimm die Vorgehensweise, die beim Beweis zur Eindeutigkeit des Grenzwerts einer Folge angewendet wird. Siehe dazu z.B. []hier oder suche dir selbst ein anderes Analysis-Skript.

Ich schreibe die Vorgehensweise aus dem obigen Skript mal ab, um hier zu kommentieren:


Für [mm] $\epsilon [/mm] > 0$ gelte: [mm] $\left\|a_n-a\right\|<\epsilon\ \forall n\geqslant N_1(\epsilon)$ [/mm] und [mm] $\left\|a_n-\bar{a}\right\|<\epsilon\ \forall n\geqslant N_2(\epsilon)$. [/mm] Dann folgt für [mm] $n\geqslant\max\left\{N_1,N_2\right\}$ [/mm] die Ungleichung [mm] $\textcolor{blue}{2\epsilon}\operatorname{\textcolor{blue}{>}} \left\|a_n-a\right\|+\left\|a_n-\bar{a}\right\|=\left\|a-a_n\right\|+\left\|a_n-\bar{a}\right\|\geqslant\left\|a - a_n + a_n - \bar{a}\right\|=\textcolor{blue}{\left\|a-\bar{a}\right\|}$. [/mm] Also gilt [mm] $\forall\epsilon [/mm] > [mm] 0:a=\bar{a}$. [/mm]


Beim Beweis wird zuerst die Definition des Grenzwertes für beide Grenzwerte [mm] $a\!$ [/mm] und [mm] $\bar{a}$ [/mm] aufgeschrieben. Danach folgt eine Ungleichung, die Du am besten von rechts nach links im Originalskript liest (und dabei den Druckfehler beim 2ten Term von links berücksichtigst. ;-)) Dann sieht man nämlich, daß dort die beiden Ungleichungen, die wir von der Definition kennen, "zusammenaddiert" wurden. Anschließend wird hier die []Dreiecksungleichung verwendet. Da sich [mm] $a\!$ [/mm] und [mm] $\bar{a}$ [/mm] für beliebig kleine [mm] $\epsilon$ [/mm] "aneinander annähern", folgt die Eindeutigkeit des Grenzwerts. Setze jetzt [mm] $a\!$ [/mm] auf einen beliebigen konkreten Wert. Dann kann [mm] $\bar{a}$ [/mm] kein anderer Wert sein.



Viele Grüße
Karl




Bezug
                
Bezug
Grenzwert gegeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 So 03.10.2010
Autor: kushkush

Hallo Karl_Pech,


Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]