matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Grenzwert einer Reihe
Grenzwert einer Reihe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Reihe: Grenzwert-Reihe-log
Status: (Frage) beantwortet Status 
Datum: 18:48 Mo 22.01.2018
Autor: MRsense

Guten Abend, hab folgende Aufgaben gegen.
Entscheiden Sie, ob die Reihe konvergent ist:

[mm] \summe_{k=2}^{n} \bruch{log(k)}{k^2} [/mm]

Meine Idee war: [mm] \bruch{log(k}{k}*\bruch{1}{k} [/mm]



Liebe Grüße
MRsense

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Mo 22.01.2018
Autor: MRsense

Ich meinte hier, dass ich zeigen soll, dass [mm] \bruch{log(k)}{k}>1, [/mm] dann ist 1/k eine Minorante????

Bezug
                
Bezug
Grenzwert einer Reihe: Aberwitziger Irrweg!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Mo 22.01.2018
Autor: Diophant

Hallo,

> Ich meinte hier, dass ich zeigen soll, dass
> [mm]\bruch{log(k)}{k}>1,[/mm] dann ist 1/k eine Minorante????

Wie soll denn das zugehen? Offensichtlich mangelt es dir an Kenntnissen der Logarithmusfunktion, sonst kann man auf eine so aberwitzig falsche Idee nicht kommen.

Zeichne mal die Funktionen f(x)=log(x) und g(x)=x mit einem Funktionenplotter, dann siehst du, was ich meine!


Gruß, Diophant

Bezug
                        
Bezug
Grenzwert einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Mo 22.01.2018
Autor: MRsense

vielen Dank , ich versuche mit Intergralkriterium :)

Bezug
        
Bezug
Grenzwert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mo 22.01.2018
Autor: Diophant

Hallo,

> Guten Abend, hab folgende Aufgaben gegen.
> Entscheiden Sie, ob die Reihe konvergent ist:

>

> [mm]\summe_{k=2}^{n} \bruch{log(k)}{k^2}[/mm]

>

> Meine Idee war: [mm]\bruch{log(k}{k}*\bruch{1}{k}[/mm]

>

Hm. Der Sinn dieser Idee erschließt sich mir nicht. Da steht nicht mehr als eine Umformung des allgemeinen Reihenglieds.

Weiter muss man einmal wieder die Feststellung treffen, dass es unheimlich hilfreich wäre, wenn bei Fragen zu Reihenkonvergenz und -grenzwerten etwas zu den zur Verfügung stehenden mathematischen Konzepten gesagt würde.

Deine Reihe ist konvergent. Es mag sein, dass es andere Wege gibt, das zu überprüfen. Ich habe es mit Hilfe des Integralkriteriums gemacht und finde diesen Weg ziemlich überschaubar.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]