matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Grenzwert einer Folge
Grenzwert einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 So 07.12.2008
Autor: HansDieter

Aufgabe
Für welche x konvergiert die Folge [mm] f(t)=\begin{cases} x^x, & \mbox{für } t=1 \\ x^{f(t-1)}, & \mbox{für } t>1 \end{cases} [/mm]

Spontan würde ich auf das Intervall [0,1] tippen. Anscheinend ist das aber nicht die Lösung.

        
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 So 07.12.2008
Autor: reverend

Nehme ich richtig an, dass [mm] t\in\IN, x\in\IR [/mm] ?
Dann wäre wohl in der Tat leicht zu zeigen, dass [mm] x\ge0. [/mm]
Auch [mm] x\le1 [/mm] ist nicht schwer.
Wenn Du das schon einmal tust, dann kommst Du Deinem vermuteten Intervall bedeutend näher.

Dann untersuch doch mal [mm] x=\bruch{1}{2}, [/mm] nur um zu sehen, wie die Folge sich eigentlich für einen willkürlichen Wert aus [0;1] verhält.

Und wenn Du das alles getan hast, dann zeig doch mal, an welcher Stelle Du eigentlich nicht weiterkommst.

Bezug
                
Bezug
Grenzwert einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:35 Mo 08.12.2008
Autor: HansDieter

Ja, deine Mengenzuordnungen von t und x sind richtig. Für x=1/2 scheint die Folge zu konvergieren; für x=1/10 zu divergieren. Aber ichh habe keinen Ansatz wie man da auf das gesuchte Intervall kommen könnte.

Bezug
                        
Bezug
Grenzwert einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Mo 08.12.2008
Autor: reverend

Ich auch noch nicht. Mal sehen.

Für ein paar Werte habe ich mal die ersten 1000 Folgenglieder berechnet und bin zu einem an beiden Enden erstaunlichen "Ergebnis" gekommen. Hier die Werte für x und den jeweiligen Grenzwert (Rechengenauigkeit nur 13 Stellen, daher sehr unzuverlässig):

1,4445 [mm] \rightarrow [/mm] divergent

[mm] \bruch{13}{9} \rightarrow [/mm] 2,64132221

1,4439 [mm] \rightarrow [/mm] 2,57842342
1,443 [mm] \rightarrow [/mm] 2,5162588
1,44 [mm] \rightarrow [/mm] 2,39381175
1,43 [mm] \rightarrow [/mm] 2,18402923
1 [mm] \rightarrow [/mm] 1
0,5 [mm] \rightarrow [/mm] 0,64118574
0,1 [mm] \rightarrow [/mm] 0,39901298
0,01 [mm] \rightarrow [/mm] alternierend 0,94148837 und 0,01309252

Das letzte Ergebnis ist nahezu sicher auf die Rechen(un)genauigkeit zurückzuführen, und wenn man ein bisschen Numerik getrieben hat, weiß man, wie groß die Fehler bei Iterationen sein können. Ich finde ja, es sieht so aus, als ob der größte Grenzwert e wäre. Aber warum sollte er gerade bei 13/9 auftreten?

Am anderen Ende erwarte ich eigentlich [mm] \limes_{x\rightarrow0}=0 [/mm]

Soweit ein bisschen Anschauungsmaterial. Vielleicht bringt es ja jemand anders auf eine Idee.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]