matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Grenzwert einer Folge
Grenzwert einer Folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Folge: Aufgabe8
Status: (Frage) beantwortet Status 
Datum: 18:51 Mo 09.10.2006
Autor: Lisa-88

Aufgabe
Zeigen Sie durch Nachweis der Monotonie und der Beschränktheit,dass die Folge (an) konvergent ist.Stellen Sie eine Vermutung über ihren Grenzwert auf und bestätigen Sie diese.

[mm] an=n/(n^2+1) [/mm]

Meine Vermutung ist,dass die Folge gegen Null läuft,da der Nenner immer größer ist als der Zähler,und somit das Ergebnis immer kleiner wird.
Daher ist sie auch streng monoton fallend.
Ich vermute auch,dass die obere Schranke 0,5 ist,denn wenn man das kleinste n eingibt,ist das Ergebnis 0,5.
Ich weiß aber nicht,wie ich beweisen kann,dass diese Dinge stimmen und wie man beweisen kann,dass diese Folge konvergent ist.
Könnt ihr mit dieses bitte ganz genau und wie für einen Laien erklären?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert einer Folge: Lösungshinweis
Status: (Antwort) fertig Status 
Datum: 19:53 Mo 09.10.2006
Autor: pauker99817

Hallo,

deine Vermutungen sind richtig!

zur Monotonie:

streng monoton fallend: Nachweis mit     [mm] a_{n} [/mm] > [mm] a_{n+1} [/mm]

                                [mm] \bruch{n}{n^2+1} [/mm] >  [mm] \bruch{n+1}{(n+1)^2+1} [/mm]
                                                               ...
Umformungen (multiplizieren mit Hauptnenner, führt zu einer wahren Aussage:    
                                                     [mm] n^2+n [/mm] > 1

Eine streng monoton fallende Folge hat als obere Schranke das erste Glied also [mm] a_{1}= [/mm] 0,5.
k=-1  wäre eine untere Schranke, denn alle Folgeglieder werden niemals negativ.  Also ist die Folge beschränkt (denn obere UND untere Schranke).

Es gibt den plausiblen Satz, dass jede monotone und beschränkte Folge auch einen Grenzwert haben muss, also konvergent ist.

Dass die grösste untere Schranke und damit der Grenzwert 0 ist, kann gezeigt werden durch:  Vermutung  g=0.  Beweis:

[mm] |a_{n} [/mm] - [mm] g|<\varepsilon [/mm]          wobei:      [mm] \varepsilon [/mm] beliebige Zahl grösser Null
[mm] |\bruch{n}{n^2+1} [/mm] - 0| < [mm] \varepsilon [/mm]    

Betragsstriche weglassen, da positives Inneres
[mm] \bruch{n}{n^2+1} [/mm]  < [mm] \varepsilon [/mm]    

umstellen

[mm] \bruch{1}{\varepsilon} [/mm]  <  [mm] \bruch{n^2+1}{n} [/mm]
[mm] \bruch{1}{\varepsilon} [/mm]  <  n + [mm] \bruch{1}{n} [/mm]

Fertig, denn für jedes [mm] \varepsilon [/mm]     lässt sich ein n finden, so dass die Ungleichung erfüllt ist.
Anschaulich erklärt:  wird ein beliebiges [mm] \varepsilon [/mm]  gewählt  z.B. 0,01, so kann man eine Indexzahl n ausrechnen, ab der alle Folgeglieder in der [mm] \varepsilon-Umgebung [/mm] des Grenzwertes liegen.
Für [mm] \varepsilon=0,01 [/mm] würde sich n=100 ergeben
Nur abzählbar viele Glieder (hier 99) der Folge liegen außerhalb dieser   [mm] \varepsilon [/mm] - Umgebung.

Je kleiner man das  [mm] \varepsilon [/mm] wählt, desto mehr Glieder liegen natürlich ausserhalb, aber immer abzählbar viele.

Ich hoffe, es war verständlich!?



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]