matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwert einer Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Grenzwert einer Folge
Grenzwert einer Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Folge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:23 Do 10.11.2005
Autor: Ronin

Also die aufgabe lautet:

Beweisen Sie mit Hilfe der  [mm] \varepsilon-N \varepsilon-Defnition [/mm] des Grenzwertes, dass:

[mm] \limes_{n\rightarrow\infty} (n^2-1)/(3*n^2+1)=1/3 [/mm]


die [mm] \varepsilon-N \varepsilon-Defnition [/mm] ist :


[mm] \forall \varepsilon [/mm] >0   [mm] \exists [/mm] N=(N [mm] \varepsilon) \forall [/mm] n [mm] \ge [/mm] (N [mm] \varepsilon) [/mm]  | an-r | < [mm] \varepsilon [/mm]

So dann hab ich gemacht:

| an-r | < [mm] \varepsilon [/mm]

| [mm] (n^2-1)/(3*n^2+1)-1/3 [/mm] | < [mm] \varepsilon [/mm]

| [mm] 3*(n^2-1)-(3*n^2+1)/3*(3*n^2+1) [/mm] | < [mm] \varepsilon [/mm]

| [mm] -4/(9*n^2+3) [/mm] | < [mm] \varepsilon [/mm]

[mm] -4/(9*n^2+3) [/mm] < [mm] \varepsilon [/mm]

[mm] \wurzel[2]{(-4/(9* \varepsilon))-3} [/mm] < n


Stimmt das so???

hab ich nun bewiesen das an einen Grenzwert (1/3) hat???

Danke


        
Bezug
Grenzwert einer Folge: nicht ganz
Status: (Antwort) fertig Status 
Datum: 23:56 Do 10.11.2005
Autor: leduart

Hallo Ronin
Du bist nicht ganz fertig. Du musst ein N angeben. aber nur irgendeines, also darf es gern nicht das kleinst mögliche sein.

> [mm]\limes_{n\rightarrow\infty} (n^2-1)/(3*n^2+1)=1/3[/mm]

> So dann hab ich gemacht:
>  
> | an-r | < [mm]\varepsilon[/mm]
>  
> | [mm](n^2-1)/(3*n^2+1)-1/3[/mm] | < [mm]\varepsilon[/mm]
>  
> | [mm]3*(n^2-1)-(3*n^2+1)/3*(3*n^2+1)[/mm] | < [mm]\varepsilon[/mm]
>  
> | [mm]-4/(9*n^2+3)[/mm] | < [mm]\varepsilon[/mm]

So hier musst du jetzt ein N suchen. wenn 4/(9 [mm] *n^{2})<\varepsilon [/mm] , dann reicht es also [mm] n^{2}>4/9/\varepsilon [/mm] jetzt kannst du [mm] N=4/(9*\varepsilon [/mm] ), dann ist N^(2) [mm] >4/(9*\varepsilon) [/mm]  oder du nimmst
[mm] N=2/(3*\wurzel{\varepsilon}) [/mm]

> [mm]-4/(9*n^2+3)[/mm] < [mm]\varepsilon[/mm]
>  
> [mm]\wurzel[2]{(-4/(9* \varepsilon))-3}[/mm] < n

> hab ich nun bewiesen das an einen Grenzwert (1/3) hat???

mit obigem N ja!
einfacher geht es in solchen Fällen mit [mm] n^{k} [/mm] in Zähler und Nenner, indem man durch die höchste Potenz von n, die vorkommt Zähler und Nenner dividiert. Dann sieht man den Grezwert schneller und kann auch leichter ein N raten. denk dran, die meisten machen den Fehler ein N zu suchen, was grade geht. aber du musst nur irgeneins finden auch wenn das kleinst mögliche 10000 mal kleiner ist!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]