matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwert bestimmen
Grenzwert bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Tipps
Status: (Frage) beantwortet Status 
Datum: 11:22 So 19.05.2013
Autor: heinze

Aufgabe
Bestimme den Grenzwert:

[mm] a_n:=\bruch{2^n+3n!+4n^n}{3^n*(3+(-1)^n)} [/mm]


Ich denke, hier handelt es sich um den uneigentlichen Grenzwert, kann das sein? Allerdings ist die Folge für mich echt kompliziert!!

die Potenz die am schnellsten wächst ist "hoch n" .

Aber wenn ich [mm] 2^n [/mm] ausklammer, das hilft mir nicht weiter.
Könnt ihr mir einen Tipp geben?


LG
heinze

        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 So 19.05.2013
Autor: Diophant

Hallo,

> Bestimme den Grenzwert:

>

> [mm]a_n:=\bruch{2^n+3n!+4n^n}{3^n*(3+(-1)^n)}[/mm]

>

> Ich denke, hier handelt es sich um den uneigentlichen
> Grenzwert, kann das sein?


So ist es. [ok]

> Allerdings ist die Folge für

> mich echt kompliziert!!

>

> die Potenz die am schnellsten wächst ist "hoch n" .

>

Achtung: du hast es hier mit zweierlei Potenzen zu tun. Solchen der Form [mm] a^n [/mm] und den [mm] 4n^n. [/mm] Dieser Term wächst in der Tat am schnellsten.

> Aber wenn ich [mm]2^n[/mm] ausklammer, das hilft mir nicht weiter.
> Könnt ihr mir einen Tipp geben?

Ich würde die Folge zunächst einmal nach unten abschätzen, um den Vorzeichenwechsel im Nenner zu beseitigen. Klammere dann im Zähler [mm] n^n [/mm] aus, der Rest ist einfach.

Gruß, Diophant

Bezug
                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 So 19.05.2013
Autor: heinze

Wie meinst du das mit dem Abschätzen im Nenner? Wir haben sowas bisher kaum gemacht! Und wenn dann nur normal Grenzwert von sehr "einfachen" Folgen. Daher fehlt mir die Übung!

[mm] (-1)^n [/mm] konvergiert an sich nicht...den Nenner ausmultiplizieren wäre auch nicht sinnvoll.

LG
heinze

Bezug
                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 So 19.05.2013
Autor: Diophant

Hallo heinze,

> Wie meinst du das mit dem Abschätzen im Nenner?

Nun, der Nenner nimmt, wenn man das mal durchrechnet, die Terme

[mm] 2*3^n [/mm] ; [mm] 4*3^n [/mm]

alternierend an. Wenn du nun eine Folge

[mm] b_n=\bruch{2^n+3n!+4n^n}{4*3^n} [/mm]

betrachtest, dann gilt sicherlich

[mm] b_n\le{a_n} [/mm]

Die Problematik ist jedoch nach wie vor die gleiche.

Die Aufgabe ist raffiniert gestellt. Von der Problematik her geht es doch letztendlich darum, was schneller wächst: n! oder [mm] n^n. [/mm] Das ist ein recht elemetare Problematik, sie wird oft in Gestalt der Folge

[mm] c_n=\bruch{n!}{n^n} [/mm]

vorgestellt, die eine Nullfolge ist. Entweder, du darfst das voraussetzen, oder aber du musst es noch zeigen (das musst du selbst wissen). Tatsache ist, dass man auf diese Problematik stößt, wenn man bei deiner Folge nachrechnen möchte, dass sie gegen [mm] \infty [/mm] strebt.

Gruß, Diophant

Bezug
                                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 So 19.05.2013
Autor: heinze

Jetzt verstehe ich gar nichts mir. Das [mm] n^n [/mm] am schnellsten wächst leuchtet mir ja ein, aber ich weiß nun gar nicht mehr wie ich hier irgendwas mit uneigentlichem Grenzwert zeigen kann bzw versteh nicht mal wie du auf [mm] 4*3^n [/mm] kommst. Kannst du mir das nochmal erklären?

LG
heinze

Bezug
                                        
Bezug
Grenzwert bestimmen: gerade und ungerade n
Status: (Antwort) fertig Status 
Datum: 12:27 So 19.05.2013
Autor: Loddar

Hallo heinze!


Betrachte mal jeweils separat ein gerade und ein ungerades $n_$ .

Was ergibt sich dann aus [mm] $(-1)^n$ [/mm] , und damit aus dem gesamten Nenner?
Nichts anderes hat Diophant gemacht.


Gruß
Loddar

Bezug
                                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 So 19.05.2013
Autor: fred97


> Jetzt verstehe ich gar nichts mir. Das [mm]n^n[/mm] am schnellsten
> wächst leuchtet mir ja ein, aber ich weiß nun gar nicht
> mehr wie ich hier irgendwas mit uneigentlichem Grenzwert
> zeigen kann bzw versteh nicht mal wie du auf [mm]4*3^n[/mm] kommst.
> Kannst du mir das nochmal erklären?



Es ist

$ [mm] a_n=\bruch{2^n+3n!+4n^n}{3^n\cdot{}(3+(-1)^n)} [/mm] $

Schauen wir uns mal den Nenner an: es gilt, weil [mm] 3+(-1)^n \le [/mm] 4 ist:

[mm] 3^n\cdot{}(3+(-1)^n) \le 4*3^n. [/mm]

Für den Zähler gilt:

   [mm] 2^n+3n!+4n^n \ge 4n^n. [/mm]

Damit haben wir:

[mm] a_n \ge \bruch{4n^n}{4*3^n}=\bruch{n^n}{3^n}. [/mm]

Für n [mm] \ge [/mm] 4 ist also: [mm] a_n \ge \bruch{4^n}{3^n}=(\bruch{4}{3})^n. [/mm]

FRED

>  
> LG
>  heinze


Bezug
                                                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Mo 20.05.2013
Autor: heinze

Danke, das habe ich nun alles soweit verstehen können.

Mir ist aber nun nicht klar, wie ich auf einen unendlichen Grenzwert komme, wenn [mm] n\to \infty. [/mm]

für [mm] (\bruch{4}{3})^n [/mm] geht der Grenzwert doch aber gegen 0 und nicht gegen unendlich!

habe ich aber [mm] \bruch{n^n}{3^n}, [/mm] dann geht der Zähler gegen [mm] \infty [/mm] und der Nenner gegen [mm] \infty...oder [/mm] wie meinst du das für [mm] n\ge [/mm] 4?


LG
heinze

Bezug
                                                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Mo 20.05.2013
Autor: M.Rex

Hallo

> Danke, das habe ich nun alles soweit verstehen können.

>

> Mir ist aber nun nicht klar, wie ich auf einen unendlichen
> Grenzwert komme, wenn [mm]n\to \infty.[/mm]

>

> für [mm](\bruch{4}{3})^n[/mm] geht der Grenzwert doch aber gegen 0
> und nicht gegen unendlich!

Wieso sollte er das tun.
Beachte für [mm] q^n [/mm] die Fälle |q|<1 und |q|>1 getrennt.



>

> habe ich aber [mm]\bruch{n^n}{3^n},[/mm] dann geht der Zähler gegen
> [mm]\infty[/mm] und der Nenner gegen [mm]\infty...oder[/mm] wie meinst du das
> für [mm]n\ge[/mm] 4?

Es gilt doch:

[mm] \frac{n^{n}}{3^{n}}=\left(\frac{n}{3}\right)^{n} [/mm]

Erkennst du nun, warum  [mm] n\le4 [/mm] betrachtet wird.
>
>

> LG
> heinze

Marius

Bezug
                                                                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 20.05.2013
Autor: heinze

Irgendwie stehe ich grad total auf dem Schlauch!

Neinm ich verstehe nicht, warum [mm] n\le [/mm] 4 betrachtet wird, wobei Fred doch [mm] n\ge [/mm] 4 geschrieben hatte.

Wir haben das in der VL kaum durchgesprochen, lediglich ging es darum, dass der Grenzwert immer [mm] \infty [/mm] oder [mm] -\infty [/mm] sein muss.

Was ist denn hier nun der Grenzwert? ich bin irritiert.


LG
heinze

Bezug
                                                                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Mo 20.05.2013
Autor: fred97


> Irgendwie stehe ich grad total auf dem Schlauch!
>  
> Neinm ich verstehe nicht, warum [mm]n\le[/mm] 4 betrachtet wird,
> wobei Fred doch [mm]n\ge[/mm] 4 geschrieben hatte.

Marius hat sich verschrieben.

FRED

>  
> Wir haben das in der VL kaum durchgesprochen, lediglich
> ging es darum, dass der Grenzwert immer [mm]\infty[/mm] oder [mm]-\infty[/mm]
> sein muss.
>  
> Was ist denn hier nun der Grenzwert? ich bin irritiert.
>  
>
> LG
>  heinze


Bezug
                                                                                
Bezug
Grenzwert bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Mo 20.05.2013
Autor: M.Rex


> > Irgendwie stehe ich grad total auf dem Schlauch!
> >
> > Neinm ich verstehe nicht, warum [mm]n\le[/mm] 4 betrachtet wird,
> > wobei Fred doch [mm]n\ge[/mm] 4 geschrieben hatte.

>

> Marius hat sich verschrieben.

>

> FRED

In der Tat, sorry, [mm] n\ge4 [/mm] ist natürlich korrekt.

Marius

Bezug
                                                                                        
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Mo 20.05.2013
Autor: heinze

Also geht der Grenzwert für [mm] n\ge [/mm] 4 gegen [mm] \infty? [/mm] und was ist mit [mm] n\le [/mm] 4?

Sorry, aber habe es noch nicht ganz verstanden!


LG
heinze

Bezug
                                                                                                
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 20.05.2013
Autor: M.Rex


> Also geht der Grenzwert für [mm]n\ge[/mm] 4 gegen [mm]\infty?[/mm] und was
> ist mit [mm]n\le[/mm] 4?

Wenn [mm] n\to\infty [/mm] ist natürlich auch [mm] n\ge4 [/mm]

Daher sind die anderen Fälle hier irrelevant.



>

> Sorry, aber habe es noch nicht ganz verstanden!

>

Zum Unterschied aber mal trotzdem:

Betrachte mal für [mm] q\in\IN [/mm] den Grenzwert [mm] \lim\limits_{n\to\infty}\left(\frac{q}{4}\right)^{n} [/mm]

Was wäre, wenn q=3?
Was wäre, wenn [mm] q\le2 [/mm]

>

> LG
> heinze

Marius

Bezug
                                                                                                        
Bezug
Grenzwert bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Mo 20.05.2013
Autor: reverend

Hallo allerseits,

> Betrachte mal für [mm]q\in\IN[/mm] den Grenzwert
> [mm]\lim\limits_{n\to\infty}\frac{q}{4}^{n}[/mm]

>

> Was wäre, wenn q=3?
> Was wäre, wenn [mm]q\le2[/mm]

...und was wäre denn, wenn [mm] q\in\IR [/mm] und z.B. q=e wäre?
Oder [mm] q=\bruch{21}{22}\pi [/mm] ?

Grüße
reverend

Bezug
                                                                                                                
Bezug
Grenzwert bestimmen: Klammern gesetzt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Mo 20.05.2013
Autor: M.Rex

Ich habe in meiner Antwort nochmal Klammern gesetzt, danke an alle, die mich auf die fehlenden Klammern aufmerksam gemacht haben.

Marius

Bezug
                                                                                                
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:21 Di 21.05.2013
Autor: fred97


> Also geht der Grenzwert für [mm]n\ge[/mm] 4 gegen [mm]\infty?[/mm] und was
> ist mit [mm]n\le[/mm] 4?

Seit über 17 Monaten bist Du im Hochschulforum Mathematik unterwegs und es scheint, als hättest Du den Grenzwertbegriff immer noch nicht verinnerlicht.

Wenn Du eine Folge [mm] (a_n) [/mm] vorliegen hast, so kommt es, was das Konvergenz/Divergenzverhalten von [mm] (a_n) [/mm] betrifft, auf endlich viele Folgenglieder nicht an !

Beispiele:

1. Ist [mm] a_n=0 [/mm] für n [mm] \in \{1,2,....., 12345434567657^{12321} \} [/mm] und [mm] a_n [/mm] >n für n> [mm] 12345434567657^{12321}, [/mm] so gilt:

     [mm] a_n \to \infty. [/mm]

2. Ist [mm] a_n=((n^n)^n)^n*e^{n^{12321}} [/mm]  für n [mm] \in \{1,...,5000\} [/mm] und [mm] a_n=1/n [/mm] für n [mm] \ge [/mm] 5001, so ist [mm] (a_n) [/mm] eine Nullfolge.

FRED

>  
> Sorry, aber habe es noch nicht ganz verstanden!
>  
>
> LG
>  heinze


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]