matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Grenzwert bestimmen
Grenzwert bestimmen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Idee
Status: (Frage) beantwortet Status 
Datum: 20:10 Do 30.08.2012
Autor: derahnungslose

Aufgabe
Bestimmen Sie den Grenzwert.

[mm] \limes_{n\rightarrow\infty} \wurzel{n(n-1)}-n [/mm]

Hallo Mathefreunde,

wie kann ich hier den Grenzwert bestimmen??Suche ich hier nach einer geschickten Umformung?
Ich habe es so versucht:

[mm] \wurzel{n(n-1)}-n [/mm] multipliziert mit [mm] \wurzel{n(n-1)}+n [/mm]

[mm] n(n-1)-n^2 [/mm]

[mm] n^2-n-n^2 [/mm] aber das stimmt leider nicht :(

        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Do 30.08.2012
Autor: Marcel

Hallo,

> Bestimmen Sie den Grenzwert.
>  
> [mm]\limes_{n\rightarrow\infty} \wurzel{n(n-1)}-n[/mm]
>  Hallo
> Mathefreunde,
>  
> wie kann ich hier den Grenzwert bestimmen??Suche ich hier
> nach einer geschickten Umformung?
>  Ich habe es so versucht:
>  
> [mm]\wurzel{n(n-1)}-n[/mm] multipliziert mit [mm]\wurzel{n(n-1)}+n[/mm]
>  
> [mm]n(n-1)-n^2[/mm]
>  
> [mm]n^2-n-n^2[/mm] aber das stimmt leider nicht :(

nein, natürlich nicht. Ich meine: [mm] $\frac{a-b}{c} \not= \frac{a-b}{c}*(a+b)\,.$ [/mm]

Aber der richtige Grundgedanke steckt schon drinnen. Du willst die
dritte binomische Formel reinschmuggeln. Das kannst Du auch, nur:
Wie erweitert man denn richtig? (Ich meine, Du sagst ja auch nicht:
[mm] "$2=10\,,$ [/mm] denn wenn ich [mm] $2\,$ [/mm] habe und dann $2*5$ rechne... "
Sondern Du sagst etwa: [mm] $2=2/1=(2\red{\;*5})/(1\red{\;*5})=10/5\,\ldots$ [/mm]
Grob gesagt: Man verändert eine Zahl nicht, wenn man sie mit einer
anderen Nichtnullzahl multipliziert und durch die gleiche wieder teilt...
Das ist ja auch der Grundgedanke des "Brucherweiterns"!)

Richtig wäre doch ($a+b [mm] \not=0$) [/mm]
[mm] $$\frac{a-b}{c}=\frac{a-b}{c}*\frac{a+b}{a+b}\,.$$ [/mm]

Also:
[mm] $$\wurzel{n(n-1)}-n=(\wurzel{n(n-1)}-n)*\frac{\wurzel{n(n-1)}+n}{\wurzel{n(n-1)}+n}\,.$$ [/mm]

Kommst Du damit nun klar/weiter? (Tipp: Falls nicht, klammere
(nachdem Du den Zähler wie bei Deiner Rechnung umgeformt hast)
im Zähler und Nenner [mm] $n\,$ [/mm] aus.)

Gruß,
  Marcel

Bezug
                
Bezug
Grenzwert bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:28 Do 30.08.2012
Autor: derahnungslose

Dankeschön Marcel,

dass du dir die Mühe gemach hast. Es hat was gebracht :). Ich bin aber auch manchmal so ein ... -.- .

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]