matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwert bestimmen
Grenzwert bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Sa 09.01.2010
Autor: toddelly

Aufgabe
Beweisen Sie, dass die folgenden Grenzwerte existieren und bestimmen sie:
a) [mm] \limes_{n\rightarrow\infty} (1+\bruch{1}{2n+1})^n [/mm]
b) [mm] \limes_{n\rightarrow\infty} (1+1\bruch {n}{2^n})^n [/mm]

Nachdem ich mit den Aufgaben nicht wirklich klargekommen bin hab ich die Grenzwerte mit nem Computerprogamm berechnet.
Der Grenzwert für a ist [mm] e^1/2 [/mm] also müsste ich die Formel ja irgendwie auf [mm] (1+\bruch{1/2}{n})^n [/mm] umformen...leider komm ich da auch noch stundenlangem ausprobieren nicht hin.
Der zweite Grenzwert soll 1 sein, da hab ich leider nicht wirklich ne Idee. Wie beweist man das die Grenzwerte überhaupt existieren?

Vielen Dank für die Hilfe!!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert bestimmen: Verbesserung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 Sa 09.01.2010
Autor: toddelly

bei der Aufgabenstellung ist mir ein Tippfehler unterlaufen dass sollte bei b)
[mm] \limes_{n\rightarrow\infty}(1+\bruch{n}{2^n})^n [/mm] heißen

Bezug
        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Sa 09.01.2010
Autor: AT-Colt

Bei Aufgabe a) kannst Du einfach mit dem erweitern, was Dir für die Exponentialfolge fehlt. (Es reicht, wenn Du [mm] $\left(1+\bruch{1/2}{f(n)}\right)^{f(n)}$ [/mm] bekommst, wobei f(n) monoton wachsend sein sollte, $f(n) = [mm] n+\bruch{1}{2}$ [/mm] wäre absolut in Ordnung.) Dann hast Du quasi ein Produkt aus zwei Folgen (wovon eine die Exponentialfolge ist), die Du einzeln auf Konvergenz überprüfen kannst. Ich schätze, die andere Folge wirst Du (auf ähnliche Weise) auch nochmal bearbeiten müssen.

Aber was gilt denn dann, wenn zwei Folgen konvergent sind, für das Produkt dieser Folgen?

Bei Aufgabe b) sehe ich im Moment keine direkte Lösung, aber folgendes könnte gehen: Zeige, dass es ein [mm] $n_{0}$ [/mm] gibt, ab dem [mm] $a_{n} [/mm] = [mm] \left(1+\bruch{n}{2^{n}}\right)^{n}$ [/mm] monoton fallend ist und für jedes [mm] $\epsilon [/mm] > 0$ ein [mm] $n_{1}$, [/mm] so dass [mm] $a_{n_{1}} [/mm] - 1 < [mm] \epsilon$. [/mm]

Eine Warnung vorweg: Das hier nutzt explizit, dass Du schon irgendwie an den Grenzwert rangekommen bist. In der Klausur könnte das ungleich schwieriger sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]