matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert Wurzelfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Grenzwert Wurzelfunktion
Grenzwert Wurzelfunktion < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Wurzelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 So 01.07.2012
Autor: Mathe-Andi

Hallo,

ich habe die Funktion

[mm] f(x)=\bruch{1}{\wurzel{1-x}} [/mm]

Kann ich da einfach so argumentieren, dass ich bei [mm] \infty [/mm] einen negativen (Unendlich-)Wert unter der Wurzel habe, und der Grenzwert so nicht definiert ist und bei [mm] -\infty [/mm] 1 geteilt durch Unendlich herauskommen würde, was gegen 0 geht, Grenzwert so = 0.

Ist es so einfach?




        
Bezug
Grenzwert Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 So 01.07.2012
Autor: M.Rex

Hallo

[mm] x\to\infty [/mm] zu betrachten, macht hier keinen Sinn, denn der Definitionsbereich ist hier

[mm] D=\{x\in\IR|x<1\} [/mm]

Betrachte also die beiden Grenzwerte

[mm] \lim_{x\to-\infty}\frac{1}{\sqrt{1-x}} [/mm]

und

[mm] \lim_{x\to1}\frac{1}{\sqrt{1-x}} [/mm]

Deine Übelegungen bezüglich [mm] x\to-\infty [/mm] sind gar nicht so verkehrt, aber noch etwas krude formuliert.

Marius


Bezug
                
Bezug
Grenzwert Wurzelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 So 01.07.2012
Autor: Mathe-Andi


> Hallo
>  
> [mm]x\to\infty[/mm] zu betrachten, macht hier keinen Sinn, denn der
> Definitionsbereich ist hier
>  
> [mm]D=\{x\in\IR|x<1\}[/mm]

Warum? Wie definiere ich denn [mm] 1-\infty? [/mm] Ist das eine unendlich kleine Zahl mit einer Null vorm Komma so dass sie gegen 0 strebt oder ist das eine unendlich "große" Zahl mit negativem Vorzeichen?

>  
> Betrachte also die beiden Grenzwerte
>  
> [mm]\lim_{x\to-\infty}\frac{1}{\sqrt{1-x}}[/mm]
>  
> und
>  
> [mm]\lim_{x\to1}\frac{1}{\sqrt{1-x}}[/mm]

Mich interessieren nur die Grenzwerte [mm] -\infty [/mm] und [mm] +\infty. [/mm] Das hatte ich nicht erwähnt, sorry.


>  
> Deine Übelegungen bezüglich [mm]x\to-\infty[/mm] sind gar nicht so
> verkehrt, aber noch etwas krude formuliert.

[mm] f(x)=\bruch{1}{\wurzel{1-x}}[/mm]   [mm]x\rightarrow-\infty[/mm]   [mm] \bruch{1}{\wurzel{1-(-\infty)}} [/mm] = [mm] \bruch{1}{\wurzel{1+\infty}} [/mm] = [mm] \bruch{1}{\wurzel{\infty}} \to [/mm] 0

Ist das akzeptabel?


>  
> Marius
>  


Bezug
                        
Bezug
Grenzwert Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 So 01.07.2012
Autor: ullim

Hi,

die Funktion ist nur da definiert, wo der Ausdruck in der Wurzel >0 ist als 1-x>0 also x<1. Für Werte kleiner 0 ist die Wurzel nicht definiert und in sofern existiert der Grenzwert für [mm] x->\infty [/mm] nicht.

Bezug
                                
Bezug
Grenzwert Wurzelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 So 01.07.2012
Autor: Mathe-Andi

Super erklärt, danke! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]