matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert Rekursive Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert Rekursive Folge
Grenzwert Rekursive Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Rekursive Folge: Ideensuche zur Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:03 Do 21.05.2009
Autor: Nice28734

Aufgabe
Sei [mm] a_1 = 0, a_2 = 1, a_n = \bruch{1}{2} (a_{n-1} + {a_{n-2} [/mm]. Beweisen Sie: [mm] \limes_{n \to \infty}a_n = \bruch{2}{3}[/mm].

Hinweis: Betrachten Sie die Hilfsolge [mm]x_n = a_n - a_{n-1} [/mm] und leiten Sie eine Formel her, die [mm]x_n[/mm] durch [mm]x_{n-1} [/mm] ausdrückt.

Hallo Zusammen,

ich komme mit dieser Aufgabe leider einfach komplett nich klar, weil mich der Hinweis nicht weiterbringt.
Ich bin für jegliche Hilfe dankbar.
Liebe Grüße.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Do 21.05.2009
Autor: leduart

Hallo
Zeichne das mal auf dem Zahlenstrahl auf. [mm] a_n [/mm] liegt immer genau in der Mitte zwischen den 2 Vorgaengern., d.h. du hast sowas wie ne [mm] Intervallschachtelung.x_n [/mm] gibt dann die jeweilige laenge des Intevalls. Mach das mal ein paar Schritte weit.
Gruss leduart

Bezug
                
Bezug
Grenzwert Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Do 21.05.2009
Autor: Nice28734


> Hallo
>  Zeichne das mal auf dem Zahlenstrahl auf. [mm]a_n[/mm] liegt immer
> genau in der Mitte zwischen den 2 Vorgaengern., d.h. du
> hast sowas wie ne [mm]Intervallschachtelung.x_n[/mm] gibt dann die
> jeweilige laenge des Intevalls. Mach das mal ein paar
> Schritte weit.
>  Gruss leduart

Ok, anschaulich kann ich das nachvollziehen. Trotzdem kann ich leider den Grenzwert dadurch nicht formal bestimmen. Wie ist denn da der Ansatz?
Liebe Grüße, Philipp.

Bezug
                        
Bezug
Grenzwert Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Do 21.05.2009
Autor: ullim

Hi,

berechne einfach mal [mm] a_n-a_{n-1} [/mm] und ersetzte dann jeweils [mm] a_n-a_{n-1} [/mm] durch [mm] x_n. [/mm]

Danach bestimme [mm] x_2 [/mm] als Anfangsbedingung aus [mm] a_2 [/mm] und [mm] a_1. [/mm] Auflösen der Rekursion führt zu

[mm] x_n=4\left(-\bruch{1}{2}^n\right) [/mm]

Dann die Substitution für [mm] x_n [/mm] wieder Rückgängig machen, die Anfangsbediengungen für [mm] a_n [/mm] berücksichtigen und die Rekursion auflösen führt auf eine geometrische Reihe die man nach bekannter Formel löst.

mfg ullim

Bezug
                                
Bezug
Grenzwert Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Do 21.05.2009
Autor: Nice28734

Also

[mm]a_n - a_{n-1} = \bruch{1}{2} (a_{n-1} + a_{n-2}) - \bruch{1}{2} (a_{n-2} + a_{n-3})[/mm]

[mm]= \bruch{1}{2} (a_{n-1} - a_{n-3})[/mm]

und

[mm]x_2 = \bruch{1}{2}[/mm]

[mm]x_n = a_n - a_{n-1}[/mm]

Ich verstehe leider nicht, was ich damit gewonnen habe, insbesondere wie ich jetzt [mm] x_n [/mm] in Abhängigkeit von [mm] x_{n-1} [/mm] ausdrücken kann. Die a's bleiben doch immer in der Gleichung.
Liebe Grüße,

Philipp.

Bezug
                                        
Bezug
Grenzwert Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Do 21.05.2009
Autor: leduart

Hallo
ich hatte gesagt, ein paar Glieder. also noch die naechsten 3 etwa, dann siehst du wie es laeuft. und kannst die allgemeine Formel  herleiten, oder durch induktion zeigen.
gruss leduart

Bezug
                                        
Bezug
Grenzwert Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Do 21.05.2009
Autor: ullim

Hi,

ich dachte mir das so

[mm] x_n:=a_n-a_{n-1}=\bruch{1}{2}(a_{n-1}+a_{n-2})-a_{n-1}=-\bruch{1}{2}(a_{n-1}-a_{n-2})=:-\bruch{1}{2}x_{n-1} [/mm]

mfg ullim

Bezug
                                                
Bezug
Grenzwert Rekursive Folge: Feedback
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Do 21.05.2009
Autor: Nice28734

Oh oh. Da hab ich ja mal den Wald vor lauter Bäumen nicht gesehen. Danke für die Hilfe, Aufgabe ist gelöst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]