matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert/Limes mit Wurzel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Grenzwert/Limes mit Wurzel
Grenzwert/Limes mit Wurzel < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert/Limes mit Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Di 11.05.2010
Autor: fabian.j

Aufgabe
Man berechne folgenden Grenzwert:

[mm] \limes_{n \to \infty}[n (1-\wurzel{1- \bruch{a}{n}})] [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt und "Hallo" erstmal!

Meine umformungen lauten dann so:

[mm] \limes_{n \to \infty}[n (1-\wurzel{1- \bruch{a}{n}})] [/mm] = [mm] \limes_{n \to \infty}(n [/mm] - n [mm] \wurzel{1- \bruch{a}{n}}) [/mm] = [mm] \limes_{n \to \infty}(n [/mm] - [mm] \wurzel{n^2 - an}) [/mm]

Meine Frage:
Kann ich mir den dritten Schritt schon sparen und sagen, dass [mm] \buch{a}{n} [/mm] in der Wurzel gegen 0 geht, somit die komplette Wurzel zu 1 wird und dann [mm] \limes_{n \to \infty} [/mm] (n - n) = 0 ist?

Oder geht die Argumentation so (jetzt nach dem dritten Schritt):
[mm] n^2 [/mm] - an > 0, da a konstant. Daraus folgt, dass [mm] \limes_{n \to \infty}\wurzel{n^2 - an} [/mm] zwar gegen [mm] +\infty [/mm] geht, aber nicht so stark wie n. Und deshalb ist der Grenzwert der gesamten Formel = [mm] +\infty [/mm] ?

Vielen Dank für die Hilfe

        
Bezug
Grenzwert/Limes mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Di 11.05.2010
Autor: steppenhahn

Hallo und [willkommenmr] !!!

> Man berechne folgenden Grenzwert:
>  
> [mm]\limes_{n \to \infty}[n (1-\wurzel{1- \bruch{a}{n}})][/mm]


> Meine umformungen lauten dann so:
>  
> [mm]\limes_{n \to \infty}[n (1-\wurzel{1- \bruch{a}{n}})][/mm] =
> [mm]\limes_{n \to \infty}(n[/mm] - n [mm]\wurzel{1- \bruch{a}{n}})[/mm] =
> [mm]\limes_{n \to \infty}(n[/mm] - [mm]\wurzel{n^2 - an})[/mm]

Leider gehen beide deine Argumentationen nicht.
Du musst deinen Ausdruck immer so umformen, dass du die Grenzwertsätze anwenden kannst.
Den Grenzwertsatz [mm] $a_{n}*b_{n}\to [/mm] a*b$ kannst du aber nur benutzen, wenn [mm] a_{n} [/mm] gegen a und [mm] b_{n} [/mm] gegen b konvergieren, also beide Limites existieren. Genauso verhält es sich natürlich bei allen anderen Grenzwertsätzen.
Bei dir existiert aber immer einer der beiden Grenzwerte nicht:

> Meine Frage:
>  Kann ich mir den dritten Schritt schon sparen und sagen,
> dass [mm]\buch{a}{n}[/mm] in der Wurzel gegen 0 geht, somit die
> komplette Wurzel zu 1 wird und dann [mm]\limes_{n \to \infty}[/mm]
> (n - n) = 0 ist?

Was du hier machst, ist kein Grenzwertsatz: Du möchtest praktisch erst den Grenzwertsatz für "-" anwenden - der geht aber nicht, weil beide Teilfolgen n und [mm] n*\sqrt{1-a/n} [/mm] nicht konvergieren (sie divergieren gegen unendlich).

(Du siehst jetzt vielleicht nicht unmittelbar, warum du Grenzwertsätze anwendest (anwenden willst) bei deiner Argumentation: Aber sobald du sagt: "Ich lasse erstmal das n in der Wurzel gegen unendlich gehen, usw.", hast du im Grunde Grenzwertsätze angewendet (warum?))

> Oder geht die Argumentation so (jetzt nach dem dritten

> Schritt):
>  [mm]n^2[/mm] - an > 0, da a konstant. Daraus folgt, dass [mm]\limes_{n \to \infty}\wurzel{n^2 - an}[/mm]

> zwar gegen [mm]+\infty[/mm] geht, aber nicht so stark wie n. Und
> deshalb ist der Grenzwert der gesamten Formel = [mm]+\infty[/mm] ?

Nein - das sind ja nur Spekulationen :-)

Mache Folgendes:

[mm] $n*\left(1-\wurzel{1- \bruch{a}{n}}\right) [/mm] = [mm] n*\left(1-\wurzel{1- \bruch{a}{n}}\right)*\frac{1+\sqrt{1-\frac{a}{n}}}{1+\sqrt{1-\frac{a}{n}}}$ [/mm]

(Nun dritte binomische Formel!) Der Trick wird übrigens häufig angewendet, wenn man Grenzwerte von Wurzelausdrücken bestimmen will.

Grüße,
Stefan

Bezug
                
Bezug
Grenzwert/Limes mit Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Di 11.05.2010
Autor: fabian.j


> Mache Folgendes:
>  
> [mm]n*\left(1-\wurzel{1- \bruch{a}{n}}\right) = n*\left(1-\wurzel{1- \bruch{a}{n}}\right)*\frac{1+\sqrt{1-\frac{a}{n}}}{1+\sqrt{1-\frac{a}{n}}}[/mm]
>  
> (Nun dritte binomische Formel!) Der Trick wird übrigens
> häufig angewendet, wenn man Grenzwerte von
> Wurzelausdrücken bestimmen will.

Hm, danke Stephan. Diese Idee hatte ich auch schon, aber irgendwie verlagert das ja das Problem bei mir nur oder ich komm nicht drauf.

Durch umformen, wie du gesagt hast, erhalte ich dann:

[mm] \limes_{n\rightarrow\infty} \bruch{-a}{1 + \wurzel{1 - \bruch{a}{n}}} [/mm]

Meine Tendenz, wenn ich raten würde, wäre wieder, dass der limes dann gegen [mm] -\bruch{a}{2} [/mm] oder hat -a läuft. Aber irgendwie hab ich ein Brett vorm Kopf und seh nicht (falls das stimmt), wie.

Bezug
                        
Bezug
Grenzwert/Limes mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Di 11.05.2010
Autor: steppenhahn

Hallo!

> Hm, danke Stephan.

Mittlerweile scheint "Stephan" üblicher zu sein als "Stefan" :-)

> Diese Idee hatte ich auch schon, aber
> irgendwie verlagert das ja das Problem bei mir nur oder ich
> komm nicht drauf.
>  
> Durch umformen, wie du gesagt hast, erhalte ich dann:
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{-a}{1 + \wurzel{1 - \bruch{a}{n}}}[/mm]

Fast richtig, bei mir ist vor dem a kein Minus.
Deine Tendenz ist richtig, der Limes ist a/2.
Dieses Mal können wir es aber auch mit den Grenzwertsätzen belegen:

[mm] $\limes_{n\rightarrow\infty}\frac{a}{1+\sqrt{1-\frac{a}{n}}} [/mm] = [mm] \frac{\limes_{n\rightarrow\infty}(a)}{\limes_{n\rightarrow\infty}\left(1+\sqrt{1-\frac{a}{n}}\right)} [/mm] = ...$

Es gilt übrigens auch [mm] $\limes_{n\rightarrow\infty}\sqrt{a_{n}} [/mm] = [mm] \sqrt{a}$, [/mm] falls [mm] $a_{n}\to [/mm] a$.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]