matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Grenzwert Konvergenz
Grenzwert Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Di 03.10.2006
Autor: Lucky_real

Aufgabe
Erklärung Allgmein zu Epsilon Bereich

Ich versuche gerade mir den Grenzwert von Folgen verständlich zu machen und bin auf den Begriff Epislon Umgebung gestossen..
Verstehe ich das richtig, das ich mit der Epsilon Umgebung eigentlich nur herausbekommen ab welchen Index N die Folge konvergiert bzw. divigiert?

Dann eine Frage zu der Definition von Grenzwert einer Folge:
wieso muss das Epsilon > 0 sein?

Und folgendes Ergebniss kann ich auch nicht ganz nach vollziehen...

Ich habe eine Folge an=n/n+1 der Grenzwert ist nun ja 1.
Für Epsilon = 0,25 gibt es N(Epsilon)=3

Wie kommt man auf diese drei denn? Heist diese Aussage, ab dem dritten Index bin ich im meinen gewünschten Episolon Bereich?

Was bringt mir dieser Epsilon Bereich nun wirklich...

Ich hoffe Ihr könnt mir da ein wenig weiterhelfen, dass wäre echt super..



        
Bezug
Grenzwert Konvergenz: einige Hinweise
Status: (Antwort) fertig Status 
Datum: 10:25 Do 05.10.2006
Autor: Loddar

Hallo Lucky-real!


> Verstehe ich das richtig, das ich mit der Epsilon Umgebung
> eigentlich nur herausbekommen ab welchen Index N die Folge
> konvergiert bzw. divigiert?

Konvergieren tut schon die ganze Folge [mm] $a_n$, [/mm] also ab dem ersten Glied.

Wenn es für eine Folge [mm] $a_n$ [/mm] für jedes beliebige [mm] $\varepsilon [/mm] \ > \ 0$ um einen festen Wert $a_$ eine [mm] $\varepsilon$-Umgebung [/mm] gibt, für die alle Folgenglieder [mm] $\left( \ a_n \ \right)_{n\ge N}$ [/mm] innerhalb dieser [mm] $\varepsilon$-Umgebung [/mm] liegen, dann konvergiert diese Folge [mm] $a_n$ [/mm] gegen den Wert $a_$ .

  

> Dann eine Frage zu der Definition von Grenzwert einer Folge:
> wieso muss das Epsilon > 0 sein?

Ein negatives [mm] $\varepsilon$ [/mm] wäre bei dem Ausdruck mit den Betragsstrichen witzlos, oder? ;-) Schließlich ist der Betrag immer nicht-negativ.

[mm] $\forall\varepsilon>0 [/mm] \ [mm] \exists N(\varepsilon)\in\IN: \red{\left| \ a_n-a \ \right| \ < \ \varepsilon} [/mm]  \ \ [mm] \forall n\ge N(\varepsilon)$ [/mm]



> Und folgendes Ergebniss kann ich auch nicht ganz nach
> vollziehen...
>  
> Ich habe eine Folge an=n/n+1 der Grenzwert ist nun ja 1.
> Für Epsilon = 0,25 gibt es N(Epsilon)=3
>  
> Wie kommt man auf diese drei denn? Heist diese Aussage, ab
> dem dritten Index bin ich im meinen gewünschten Episolon
> Bereich?

Ganz genau! [ok]
Und den Wert erhält man durch Einsetzen in obige "Formel" und umstellen nach $n \ > \ ...$ :

[mm] $\left| \ a_n-a \ \right| [/mm] \ = \ [mm] \left| \ \bruch{n}{n+1}-1 \ \right| [/mm] \ = \ [mm] \left| \ \bruch{n-(n+1)}{n+1} \ \right| [/mm] \ = \ [mm] \left| \ -\bruch{1}{n+1} \ \right| [/mm] \ = \ [mm] \red{\bruch{1}{n+1} \ < \ \varepsilon \ = \ \bruch{1}{4}}$ [/mm]


Nun also die Ungleichung [mm] $\bruch{1}{n+1} [/mm] \ < \ [mm] \bruch{1}{4}$ [/mm] nach $n \ > \ ...$ umstellen ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]