matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert Folgen und Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwert Folgen und Reihen
Grenzwert Folgen und Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Folgen und Reihen: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 12:02 Di 25.01.2011
Autor: Shoegirl

Aufgabe
Berechnen Sie die Grenzwerte der unten stehenden Folgen und Reihen für n -> unendlich:

an= (1+ [mm] (1/5n))^n [/mm]

Hallo, ich habe hier jetzt etwas Probleme, weil ich dieses Verfahren nur mit rationalen Funktionen kenne. Dort guckt man ja dann einfach wo die höhste Potenz ist und kann das ganze dann daraus bestimmen. Das ist ja aber bei so einer Aufgabe nicht möglich.
Ich habe in einem Buch nachgelesen und dort wird das ganze erstmal zu einem Bruch gemacht. Sprich man teilt das ganze einfach durch 1 und multpliziert dann Nenner und Zähler mit der Funktion selbst. Ziel ist es dann zu einer Substitution zu kommen. Dort wird dann die Variable durch unendlich ausgetauscht und das ganze dann errechnet.
Irgendwie haut das hier ja aber auch nicht hin, wegen den hoch n. Also ich kann es zumnindest nicht.
Gibt es noch einen anderen, möglichst einfachen Weg?

        
Bezug
Grenzwert Folgen und Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Di 25.01.2011
Autor: schachuzipus

Hallo Shoegirl,

> Berechnen Sie die Grenzwerte der unten stehenden Folgen und
> Reihen für n -> unendlich:
>
> an= (1+ [mm](1/5n))^n[/mm]
> Hallo, ich habe hier jetzt etwas Probleme, weil ich dieses
> Verfahren nur mit rationalen Funktionen kenne. Dort guckt
> man ja dann einfach wo die höhste Potenz ist und kann das
> ganze dann daraus bestimmen. Das ist ja aber bei so einer
> Aufgabe nicht möglich.
> Ich habe in einem Buch nachgelesen und dort wird das ganze
> erstmal zu einem Bruch gemacht. Sprich man teilt das ganze
> einfach durch 1 und multpliziert dann Nenner und Zähler
> mit der Funktion selbst. Ziel ist es dann zu einer
> Substitution zu kommen. Dort wird dann die Variable durch
> unendlich ausgetauscht und das ganze dann errechnet.
> Irgendwie haut das hier ja aber auch nicht hin, wegen den
> hoch n. Also ich kann es zumnindest nicht.
> Gibt es noch einen anderen, möglichst einfachen Weg?

Kennst du [mm]\lim\limits_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e[/mm] (eulersche Zahl) und in Verallgemeinerung [mm]\lim\limits_{n\to\infty}\left(1+\frac{\red{x}}{n}\right)^n=e^{\red{x}}[/mm] für alle [mm]x\in\IR[/mm] ?

Das sollte helfen.

Für die Grenzwertbetrachtung der Reihe [mm]\sum\limits_{n=1}^{\infty}\underbrace{\left(1+\frac{1}{5n}\right)^n}_{a_n}[/mm] hilft der GW der Folge [mm](a_n)_{n\in\IN}[/mm] und das Trivialkriterium für Reihenkonvergenz ...



Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]