matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenGrenzwert $(1 +ir/n)^n$
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Grenzwert $(1 +ir/n)^n$
Grenzwert $(1 +ir/n)^n$ < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert $(1 +ir/n)^n$: Grenzwert Folge Realteile
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 25.04.2018
Autor: zahlenspieler

Hallo,
die Folge [mm](z_n)[/mm] ist definiert durch
[mm]z_n \colon=\left(1 +\frac{ir}{n}\right)^n[/mm], wobei [mm]r[/mm] eine positive reelle Zahl.
Als erstes wollte ich zeigen: [mm]\lim_{n \to \infty} \operatorname{re}\,z_n =\cos{r}[/mm].

[mm]\begin{eqnarray} \operatorname{re}\,z_n &=\frac{z_n +\bar{z_n}}{2} &=\sum_{k=0}^{n} \frac{{n \choose k}r^{k}}{n^k}\* i^{k \bmod{4} \* \frac{1 +(-1)^k}{2} \end{eqnarray}[/mm]
Diejenigen Summanden mit ungeraden Indizes verschwinden; jetzt kann man die Summanden mit geraden Indizes in zwei Gruppen einteilen: Diejenigen, die durch 4 teilbar sind, und diejenigen mit Rest 2 modulo 4.
Dann entsteht
[math]\begin{equation} \operatorname{re}\,z_n =\begin{cases} \sum_{j=0}^{\lfloor n/4\rfloor} \frac{{n \choose 4j} \cdot r^{4j}}{n^{4j}} -\sum_{j=1}^{\lfloor n/4 \rfloor} \frac{{n \choose 4j-2}r^{4j-2}}{n^{4j-2}} & \mbox{falls $n \equiv 0 \bmod{4}$ oder $n \equiv 1 \bmod{4}$} \\ \sum_{j=0}^{\lfloor n/4\rfloor} \frac{{n \choose 4j} \cdot r^{4j}}{n^{4j}} -\sum_{j=1}^{\lceil n/4 \rceil} \frac{r^{4j-2}}{n^{4j-2}} & \mbox{sonst} \end{cases} \end{equation}[/math]

Um [mm]\operatorname{re}\,z_n[/mm] 'nach oben' abzuschätzen, habe ich benutzt:
[mm]\frac{1}{(k+1)!} < \frac{{n \choose k}}{n^{k}} < \frac{1}{k!}[/mm]
für [mm]1 \leq k \leq n[/mm]

Wenn ich nun die entspr. Ungleichungen addiere, erhalte ich für [mm]n \equiv 1 \bmod{4}[/mm] oder $n [mm] \equiv [/mm] 0 [mm] \bmod{4}$ [/mm]
[math]\operatorname{re}\,z_n < 1 +\sum_{k=1}^{\lfloor n/4\rfloor} \frac{r^{4j}}{(4j)!} +\sum_{j=1}^{\lfloor n/4\rfloor} \frac{r^{4j-2}}{(4j-2)!}\* \frac{4j -2 -(4j-1)}{4j-1} =\sum_{j=0}^{\lfloor n/4 \rfloor} \frac{r^{4j}}{(4j)!} -\sum_{j=1}^{\lfloor n/4\rfloor} \frac{r^{4j-2}}{(4j-2)!} +\sum_{j=1}^{\lfloor n/4\rfloor} \frac{r^{4j-2}}{(4j-2)!} \* \frac{4j-2}{4j-1}[/math]

Dabei ist
[math] \sum_{j=0}^{\lfloor n/4 \rfloor} \frac{r^{4j}}{(4j)!} -\sum_{j=1}^{\lfloor n/4\rfloor} \frac{r^{4j-2}}{(4j-2)!} =\sum_{k=0}^{\lfloor n/2\rfloor} \frac{r^{2k} \* (-1)^k}{(2k)!}[/math]

Und
[math]\sum_{j=1}^{\lfloor n/4\rfloor} \frac{r^{4j-2}}{(4j-2)!} \* \frac{4j-2}{4j-1} < \frac{1}{2}(\sin{r} +\sinh{r})[/math]

Damit ist für $n [mm] \equiv [/mm] 1 [mm] \bmod{4}$ [/mm] oder $n [mm] \equiv [/mm] 0 [mm] \bmod{4}$ [/mm]
[math]\operatorname{re}\,z_n -\sum_{k=0}^{\lfloor n/2\rfloor} \frac{r^{2k} \* (-1)^k}{(2k)!} < \frac{1}{2}(\sin{r} +\sinh{r})[/math]

Wenn ich in den Fällen $n [mm] \equiv [/mm] 2 [mm] \bmod{4}$ [/mm] oder $n [mm] \equiv [/mm] 3 [mm] \bmod{4}$ [/mm] die entspr. Ungleichungen addiere, erhalte ich
[math]\sum_{j=0}^{\lfloor n/4\rfloor} \frac{{n \choose 4j} \cdot r^{4j}}{n^{4j}} -\sum_{j=1}^{\lceil n/4 \rceil} \frac{r^{4j-2}}{n^{4j-2}} < \sum_{j=0}^{\lfloor n/4} \frac{r^{4j}}{(4j)!} +\sum_{j=1}^{\lceil n/4\rceil} \frac{r^{4j-2}}{(4j-2)!} \* \frac{4j-2 -(4j-1)}{4j-1} =\sum_{j=0}^{\lfloor n/4} \frac{r^{4j}}{(4j)!} -\sum_{j=0}^{\lfloor n/4\rfloor} \frac{r^{4j+2}}{(4j+2)!} +\sum_{j=1}^{\lceil n/4\rceil} \frac{r^{4j-2}}{(4j-2)!} \* \frac{4j-2}{4j-1}[/math]

Dabei ist wieder
[math]\sum_{j=0}^{\lfloor n/4} \frac{r^{4j}}{(4j)!} -\sum_{j=0}^{\lfloor n/4\rfloor} \frac{r^{4j+2}}{(4j+2)!} =\sum_{k=0}^{\lfloor n/2\rfloor} \frac{r^{2k} \* (-1)^{k}}{(2k)!}[/math]

Also erhalte ich für $n [mm] \equiv [/mm] 2 [mm] \bmod{4}$ [/mm] oder $n [mm] \equiv [/mm] 3 [mm] \bmod{4}$ [/mm]
[math]\operatorname{re}\,z_n -\sum_{k=0}^{\lfloor n/2\rfloor} \frac{r^{2k} \* (-1)^{k}}{(2k)!} < \sum_{j=1}^{\lceil n/4\rceil} \frac{r^{4j-2}}{(4j-2)!} \* \frac{4j-2}{4j-1}[/math]

und die Summe auf der rechten Seite der vorang. Ungleichung sollte wieder kleiner als [math]\frac{1}{2}(\sin{r} +\sinh{r})[/math] sein.

Ist [math](c_n)[/math] def. durch [math]c_n\colon=\sum_{k=0}^{\lfloor n/2\rfloor} \frac{r^{2k} \* (-1)^{k}}{(2k)!}[/math], dann ist stets [math]c_{2m} =c_{2m+1}[/math]. Da die Teilfolge [math](c_{2m})[/math] nach oben beschränkt ist, ist nat. auch [math](c_n)[/math] nach oben beschränkt; also muss auch die Folge [math](\operatorname{re}\,z_n)[/math] nach oben beschr. sein.

Tja, wie kann ich hier also weiterkommen, um die Grenzwert-Behauptung zu beweisen?



        
Bezug
Grenzwert $(1 +ir/n)^n$: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 25.04.2018
Autor: Gonozal_IX

Hiho,

eigentlich brauchst du hier nichts als den binomischen Lehrsatz. Nach diesem gilt:

[mm] $\left(1 +\frac{ir}{n}\right)^n [/mm] = [mm] \sum_{k=0}^n \vektor{n \\ k}\frac{(ir)^k}{n^k}$ [/mm]

Und der hintere Ausdruck konvergiert nun dank majorisierter Konvergenz für [mm] $n\to\infty$ [/mm] gegen [mm] $\sum_{k=0}^\infty \frac{(ir)^k}{k!}$ [/mm]

D.h. insgesamt erhält man:
[mm] $\left(1 +\frac{ir}{n}\right)^n \to \sum_{k=0}^\infty \frac{(ir)^k}{k!}$ [/mm]


Nun nutze [mm] $i^2 [/mm] = -1$ um die Summe in einen Imaginärteil und einen Realteil zusammenzufassen. Nutz du weiterhin [mm] $i^3 [/mm] = -i$ werden beide Summenteile alternierend.

Gruß,
Gono

Bezug
                
Bezug
Grenzwert $(1 +ir/n)^n$: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Mi 25.04.2018
Autor: fred97


> Hiho,
>  
> eigentlich brauchst du hier nichts als den binomischen
> Lehrsatz. Nach diesem gilt:
>  
> [mm]\left(1 +\frac{ir}{n}\right)^n = \sum_{k=0}^n \frac{(ir)^k}{k!} \to \sum_{k=0}^\infty \frac{(ir)^k}{k!}[/mm]

Hallo  Gono,
wie kommst du denn auf das "=" ?? Das ist nicht  richtig.


>  
> Nun nutze [mm]i^2 = -1[/mm] um die Summe in einen Imaginärteil und
> einen Realteil zusammenzufassen. Nutz du weiterhin [mm]i^3 = -i[/mm]
> werden beide Summenteile alternierend.
>  
> Gruß,
>  Gono  


Bezug
                        
Bezug
Grenzwert $(1 +ir/n)^n$: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Mi 25.04.2018
Autor: Gonozal_IX

Hallo fred,

danke für den Hinweis… das passiert, wenn man gleich mehrere Schritte zusammenfassen will… ich werde es editieren (auch wenn der Grenzwert-Schritt dann nicht mehr so schön offensichtlich ist…)

Gruß,
Gono



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]