matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert - rekursive Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Grenzwert - rekursive Folge
Grenzwert - rekursive Folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert - rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Fr 01.02.2008
Autor: CaptainCaracho

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Der Grenzwert der rekursiv definierten Folge mit [mm] a_{n+1} [/mm] = [mm] \wurzel{2-\bruch{1}{a_n^2+1}} [/mm] und [mm] a_{1} [/mm] = 1 lautet:

Die Antwort ist [mm] \wurzel{\wurzel{5} + 1 / 2} [/mm]

Kann mir vielleicht jemand einen Ansatz geben wie ich das lösen kann?? ich weiss zwar wie man Folgen berechnet aber hier bin ich definitiv überfordert

Lieben Gruß

        
Bezug
Grenzwert - rekursive Folge: Hinweise
Status: (Antwort) fertig Status 
Datum: 11:50 Fr 01.02.2008
Autor: Roadrunner

Hallo CaptainCaracho!


Du musst erst die Konvergenz dieser Folge nachweisen, indem Du zeigst, dass die Folge sowohl monoton als auch beschränkt ist. Daraus folgt dann unmittelbar die Konvergenz.

Der Nachweis von Monotonie und Beschränktheit kann z.B. jeweils mittels vollständiger Induktion erfolgen.

Für die Grenzwertberechnung $a_$ wird dann folgender Ansatz gewählt:
$$a \ := \ [mm] \limes_{n\rightarrow\infty}a_n [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}a_{n+1}$$ [/mm]
Dies wird nun in die Rekursionsvorschrift eingesetzt:
$$a \ = \ [mm] \wurzel{2-\bruch{1}{a^2+1}}$$ [/mm]
Nun nach $a \ = \ ...$ umstellen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Grenzwert - rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Fr 01.02.2008
Autor: CaptainCaracho

Hallo Roadrunner,

ich denke wir können davon ausgehen dass die reihe konvergiert. zumindest in der klausur. ich hab genau da probleme.. wie löse ich nach a auf??

Bezug
                        
Bezug
Grenzwert - rekursive Folge: erste Schritte
Status: (Antwort) fertig Status 
Datum: 12:19 Fr 01.02.2008
Autor: Roadrunner

Hallo CaptainCaracho!


Quadriere die Gleichung und multipliziere anschließend mit [mm] $\left(a^2+1\right)$ [/mm] .

Damit erhältst Du eine biquadratische Gleichung, die Du mit der Substitution $x \ := \ [mm] a^2$ [/mm] auf eine "normale" quadratische Gleichung reduzieren kannst.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Grenzwert - rekursive Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:41 Fr 01.02.2008
Autor: CaptainCaracho

ok dankeschöön^^



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]