matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Übung
Status: (Frage) beantwortet Status 
Datum: 08:06 Fr 08.03.2013
Autor: ellegance88

Aufgabe
Bestimmen Sie die folgenden Grenzwerte.

a) [mm] \limes_{n \to \infty}n-\wurzel{n^2-n+1} [/mm]

Guten morgen.
ich wollte fragen, ob meine Ansätze richtig sind.

[mm] \limes_{n \to \infty}n-\wurzel{n^2-n+1} [/mm]  = [mm] \limes_{n \to \infty}n-\wurzel{n^2-n+1} [/mm] * [mm] \bruch{n+\wurzel{n^2-n+1}}{n+\wurzel{n^2-n+1}} [/mm] = [mm] \limes_{n \to \infty} \bruch{n+1}{n+\wurzel{n^2-n+1}} [/mm]

wenn es richtig ist, wie mache ich es weiter. brauche eine 100% richtige Aufschreibung. Meine Übungsleiter ziehen mir immer punkte ab, weil ich es nicht richtig aufschreibe, aber die zeigen mir auf den Zettel nicht wie ich das schreiben soll. Mein Vorschlag wäre im Zähler n ausklammern und im Nenner auch, aber das hab ich ja bei einer anderen Übung auch gemacht haben die keine volle Punktzahl gegeben ohne Begründung. (entweder weil es falsch war oder keine ahnung) Laut meinem Übungsleiter müsste der Grenzwert dieser Aufgabe bei 0 liegen.



        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Fr 08.03.2013
Autor: fred97


> Bestimmen Sie die folgenden Grenzwerte.
>  
> a) [mm]\limes_{n \to \infty}n-\wurzel{n^2-n+1}[/mm]
>  Guten morgen.
>  ich wollte fragen, ob meine Ansätze richtig sind.
>  
> [mm]\limes_{n \to \infty}n-\wurzel{n^2-n+1}[/mm]  

= [mm]\limes_{n \to \infty}n-\wurzel{n^2-n+1}[/mm]

> * [mm]\bruch{n+\wurzel{n^2-n+1}}{n+\wurzel{n^2-n+1}}[/mm] =
> [mm]\limes_{n \to \infty} \bruch{n+1}{n+\wurzel{n^2-n+1}}[/mm]

>



Da sind schon 2 Sachen drin, die nicht O.K. sind: Du hast Klammern vergessen und am Ende steht im Zähler n-1, also

[mm]\limes_{n \to \infty}n-\wurzel{n^2-n+1}[/mm]  =
[mm]\limes_{n \to \infty}(n-\wurzel{n^2-n+1})[/mm] *[mm]\bruch{n+\wurzel{n^2-n+1}}{n+\wurzel{n^2-n+1}}[/mm] =
[mm]\limes_{n \to \infty} \bruch{n-1}{n+\wurzel{n^2-n+1}}[/mm]



> wenn es richtig ist, wie mache ich es weiter. brauche eine
> 100% richtige Aufschreibung. Meine Übungsleiter ziehen mir
> immer punkte ab, weil ich es nicht richtig aufschreibe,
> aber die zeigen mir auf den Zettel nicht wie ich das
> schreiben soll. Mein Vorschlag wäre im Zähler n
> ausklammern und im Nenner auch,


Genau


> aber das hab ich ja bei
> einer anderen Übung auch gemacht haben die keine volle
> Punktzahl gegeben ohne Begründung. (entweder weil es
> falsch war oder keine ahnung)




> Zeig mal Deine witeren Schritte.

> Laut meinem Übungsleiter
> müsste der Grenzwert dieser Aufgabe bei 0 liegen.

Da irrt der Übungsleiter und kriegt von mir 0 Punkte für diese Aufgabe

FRED

>  
>  


Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:37 Fr 08.03.2013
Autor: ellegance88

mein nächster Schritt:

[mm] \limes_{n \to \infty}\bruch{n(1-\bruch{1}{n})}{n(1)+\wurzel{n^2-n+1}} [/mm] = [mm] \limes_{n \to \infty}\bruch{(1-\bruch{1}{n})}{1+\wurzel{n^2-n+1}} [/mm]

nun würd ich im Nenner [mm] n^2 [/mm] ausklammern, aber hätte das Problem, dass ich es nicht kürzen könnte..


Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Fr 08.03.2013
Autor: Valerie20

Hi!

> mein nächster Schritt:
>
> [mm]\limes_{n \to \infty}\bruch{n(1-\bruch{1}{n})}{n(1)+\wurzel{n^2-n+1}}[/mm]

Du machst hier einen sehr groben Fehler beim ausklammern!
Ist denn etwa: $xa+b=x(a+b)$ ?

> = [mm]\limes_{n \to \infty}\bruch{(1-\bruch{1}{n})}{1+\wurzel{n^2-n+1}}[/mm]  [notok][notok]

> nun würd ich im Nenner [mm]n^2[/mm] ausklammern, aber hätte das
> Problem, dass ich es nicht kürzen könnte..

[mm] $n^2$ [/mm] auszuklammern ist der richtige Schritt, den du gleich hättest einschlagen sollen.
Wenn du richtig ausklammerst, kommst du damit weiter.

Valerie


Bezug
                                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:04 Fr 08.03.2013
Autor: ellegance88

wenn ich [mm] n^2 [/mm] ausklammere,

[mm] \limes_{n \to \infty} \bruch{n-1}{n+ n^2 \wurzel{1- \bruch{1}{n}+ \bruch{1}{n^2}}} [/mm] oder das selbe aber [mm] n^2 [/mm] noch in die Wurzel?

Bezug
                                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Fr 08.03.2013
Autor: Diophant

Hallo,

> wenn ich [mm]n^2[/mm] ausklammere,
>
> [mm]\limes_{n \to \infty} \bruch{n-1}{n+ n^2 \wurzel{1- \bruch{1}{n}+ \bruch{1}{n^2}}}[/mm]
> oder das selbe aber [mm]n^2[/mm] noch in die Wurzel?


Ganz ehrlich: wenn man nur diese Frage liest, versteht man außer Bahnhof nix. Valerie hat dich darauf aufmerksam gemacht, dass man n aus dem gesamten Nenner ausklammern muss, und falls deine obige Frage lauten sollte, ob du [mm] n^2 [/mm] jetzt aus der Wurzel richtig herausgezogen hast ist die Antwort: nein. Es ist [mm] \wurzel{a*b}=\wurzel{a}*\wurzel{b} [/mm] für nichtnegative a,b und das hast du nicht beachtet. Vereinfacht gesprochen: wenn man den Faktor [mm] n^2 [/mm] aus einer Quadratwurzel herauszieht, muss man selbstverständlich radizieren.


Gruß, Diophant



Bezug
                                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Fr 08.03.2013
Autor: ellegance88

okay ich werde es mal gleich in ruhe rechnen und es mit anderen Studenten vergleichen.

Bezug
        
Bezug
Grenzwert: kleineres Wurzelgemüse
Status: (Antwort) fertig Status 
Datum: 09:26 Fr 08.03.2013
Autor: reverend

Hallo ellegance,

es geht auch noch anders.

> Bestimmen Sie die folgenden Grenzwerte.
>  
> a) [mm]\limes_{n \to \infty}n-\wurzel{n^2-n+1}[/mm]
>
> Laut meinem Übungsleiter
> müsste der Grenzwert dieser Aufgabe bei 0 liegen.

Vielleicht verwechselt da jemand Aufgaben (Du oder er). Ansonsten ist die Lösung falsch, wie Fred ja auch schon gaaaaanz vorsichtig andeutete. ;-)

Ein alternativer Weg geht hier über quadratische Ergänzung und Substitution:  

[mm] \lim_{n\to\infty}\left(n-\wurzel{n^2-n+1}\right)=\lim_{n\to\infty}\left(n-\wurzel{\left(n^2-n+\bruch{1}{4}\right)+\bruch{3}{4}}\right)= \lim_{n\to\infty}\left(n-\wurzel{\left(n-\bruch{1}{2}\right)^2+\bruch{3}{4}}\right)=\cdots [/mm]

Jetzt ersetzen wir mal [mm] k:=n-\bruch{1}{2} [/mm] und haben

[mm] \cdots=\lim_{k\to\infty}\left(k+\bruch{1}{2}-\wurzel{k^2+\bruch{3}{4}}\right)=\bruch{1}{2} [/mm]

Die Wurzel geht für wächsendes k gegen k.

Das sollte normalerweise auch reichen, sauberer ist es auch hier mit Ausklammern, also dem Zwischenschritt

[mm] \cdots=\lim_{k\to\infty}\left(\bruch{1}{2}+k*(1-\wurzel{1+\bruch{3}{4k^2}}\right)=\bruch{1}{2} [/mm]

Nachtrag, weil es sowieso gleich jemand bemängeln wird:
woher wissen wir eigentlich, dass der rechte Term gegen Null geht? k wird größer, die Klammer [mm] (1-\wrzel{}) [/mm] kleiner. Nur wieso soll das gegen Null laufen?

Das ist in der Tat nur mit der Methode zu zeigen, die Du ja anwenden willst, Erweiterung durch 3. binomische Formel.
Aber so wie oben kann man schnell "überschlagen", wie der Grenzwert aussehen wird.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]