matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Grenzwert
Grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Idee gesucht
Status: (Frage) beantwortet Status 
Datum: 17:47 Do 14.07.2011
Autor: derahnungslose

Aufgabe
Bestimmen Sie den Grenzwert:
[mm] \limes_{x\rightarrow\infty} \wurzel{1+4x^4}/(1+x)^2 [/mm]

Hallo liebe Mathefreunde,

Ich komme bei dieser Aufgabe leider nicht weiter. Habe das Ergebnis (es muss 2 raus kommen), weiß aber nicht wie ich da hin komme. Meine Idee war zu erweitern, weil das bei einer ähnlichen Aufgabe geklappt hat. Freue mich auf eure Ideen ;)

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Do 14.07.2011
Autor: schachuzipus

Hallo derahnungslose,


> Bestimmen Sie den Grenzwert:
> [mm]\limes_{x\rightarrow\infty} \wurzel{1+4x^4}/(1+x)^2[/mm]
>  Hallo
> liebe Mathefreunde,
>  
> Ich komme bei dieser Aufgabe leider nicht weiter. Habe das
> Ergebnis (es muss 2 raus kommen), weiß aber nicht wie ich
> da hin komme. Meine Idee war zu erweitern, weil das bei
> einer ähnlichen Aufgabe geklappt hat. Freue mich auf eure
> Ideen ;)

Die Idee ist hier, geschickt auszuklammern.

Klammere im Zähler unter der Wurzel [mm] $4x^4$ [/mm] aus und ziehe es gem. Wurzelgesetz [mm] $\sqrt{a\cdot{}b}=\sqrt{a}\cdot{}\sqrt{b}$ [/mm] raus

Im Nenner klammere innerhalb der Klammer mal $x$ aus und ziehe es als [mm] $x^2$ [/mm] raus ...

Dann kannst du kürzen und siehst, wie der Hase läuft!


Gruß

schachuzipus


Bezug
                
Bezug
Grenzwert: Ist das richtig so?
Status: (Frage) beantwortet Status 
Datum: 19:43 Do 14.07.2011
Autor: derahnungslose

okay ich habe es mal versucht und das ist dabei raus gekommen:

( [mm] \wurzel{4} *\wurzel{x^4}+\wurzel{1}/(x(x+2+1/x))= [/mm]

[mm] 2*x^2+1/(x(x+2+1/x))=da [/mm] kürze ich => 2x+1/(x+2+1/x) da lim gegen unendlich geht kann ich +1 im Zähler vernachlässigen, sowie +2 im Nenner und [mm] 1/\infty [/mm] ist so klein, dass es keine Rolle spielt. Ist das korrekt??

Bezug
                        
Bezug
Grenzwert: nicht richtig
Status: (Antwort) fertig Status 
Datum: 19:55 Do 14.07.2011
Autor: Loddar

Hallo derahnungslose!


Das stimmt leider überhaupt nicht. Schließlich gilt im Allgemeinen:

[mm]\wurzel{a+b} \ \red{\not=} \ \wurzel{a}+\wurzel{b}[/mm]


Im Zähler meinte schachuzipus das folgendermaßen:

[mm]\wurzel{1+4x^4} \ = \ \wurzel{x^4*\left(\bruch{1}{x^4}+4\right)} \ = \ \wurzel{x^4}*\wurzel{\bruch{1}{x^4}+4} \ = \ ...[/mm]


Gruß
Loddar


Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:34 Fr 15.07.2011
Autor: schachuzipus

Hallo Loddar,


> Hallo derahnungslose!
>  
>
> Das stimmt leider überhaupt nicht. Schließlich gilt im
> Allgemeinen:
>  
> [mm]\wurzel{a+b} \ \red{\not=} \ \wurzel{a}+\wurzel{b}[/mm]
>  
>
> Im Zähler meinte schachuzipus das folgendermaßen:
>  
> [mm]\wurzel{1+4x^4} \ = \ \wurzel{x^4*\left(\bruch{1}{x^4}+4\right)} \ = \ \wurzel{x^4}*\wurzel{\bruch{1}{x^4}+4} \ = \ ...[/mm]

Naja, letztlich ist es ja egal, aber in meiner Antwort meinte ich schon, dass direkt [mm]4x^4[/mm] ausgeklammert werden sollte (damit eine 1 bleibt)

Also [mm]\sqrt{1+4x^4}=\sqrt{4x^4\cdot{}\left(\frac{1}{4x^4}+1\right)}=...[/mm]

Spielt letztlich keine (große) Rolle, aber so meinte ich es ;-)

>  
>
> Gruß
>  Loddar
>  

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]