matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Sa 12.06.2010
Autor: Princess17

Aufgabe
Bestimmen Sie jeweils den Grenzwert a [mm] \in \IR [/mm] der Folge [mm] (a_n)_(n \in \IN) [/mm] und begründen Sie Ihre Wahl mit einer geeigneten Rechnung.
[mm] a_n [/mm] = [mm] \bruch{1}{n}sin(n) [/mm]

Hallo :-)
Ich habe leider keine Ahnung, wie man so eine Aufgabe löst. Ich hatte nur Mathe Grundkurs und da haben wir so etwas gar nicht gemacht und jetzt soll ich das auf einmal können... Deshalb kann ich leider auch keinen richtigen Lösungsansatz posten. Als Hinweis steht bei der Aufgabe, dass man sin(n) nach oben und unten abschätzen soll. Somit habe ich geschrieben:

[mm] -\bruch{1}{n} \le a_n \le \bruch{1}{n}. [/mm]
Ich weiß dass [mm] -\bruch{1}{n} \mapsto -\infty [/mm] und [mm] \bruch{1}{n} \mapsto \infty [/mm] für n [mm] \mapsto \infty. [/mm]
Aber was ist jetzt der Grenzwert der Folge und wie berechnet man das??

Vielen Dank für eure Hilfe.

        
Bezug
Grenzwert: Korrektur
Status: (Antwort) fertig Status 
Datum: 14:44 Sa 12.06.2010
Autor: Loddar

Hallo Princess!

> [mm]-\bruch{1}{n} \le a_n \le \bruch{1}{n}.[/mm]

[ok]


> Ich weiß dass [mm]-\bruch{1}{n} \mapsto -\infty[/mm] und [mm]\bruch{1}{n} \mapsto \infty[/mm] für n [mm]\mapsto \infty.[/mm]

Was? [aeh] Das solltest Du nochmals stark überdenken!

Dann kommst Du auch schnell auf den Grenzwert.


Gruß
Loddar


Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Sa 12.06.2010
Autor: Princess17

Oh ja, ich sehe es.
Sowohl [mm] -\bruch{1}{n} [/mm] als auch [mm] \bruch{1}{n} \mapsto [/mm] 0, wenn n [mm] \mapsto \infty [/mm] !
Also würde ich logisch mal schließen, dass der Grenzwert der gesamten Funktion auch 0 ist (??).
Wärst du so lieb, mir das einmal komplett "mathematisch" aufzuschreiben? Mit diesem ... [mm] \le a_n \le [/mm] ... und so und wie man dann folgert, dass der Grenzwert auch 0 ist. Ich weiß gar nicht, wie man das aufschreibt. :-(

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Sa 12.06.2010
Autor: abakus


> Oh ja, ich sehe es.
>  Sowohl [mm]-\bruch{1}{n}[/mm] als auch [mm]\bruch{1}{n} \mapsto[/mm] 0, wenn
> n [mm]\mapsto \infty[/mm] !
>  Also würde ich logisch mal schließen, dass der Grenzwert
> der gesamten Funktion auch 0 ist (??).
>  Wärst du so lieb, mir das einmal komplett "mathematisch"
> aufzuschreiben? Mit diesem ... [mm]\le a_n \le[/mm] ... und so und
> wie man dann folgert, dass der Grenzwert auch 0 ist. Ich
> weiß gar nicht, wie man das aufschreibt. :-(

Hallo,
du weißt, dass sin n zwischen -1 und 1 liegt. Das kannst du sicher selbst als Doppelungleichung schreiben.
Daraus folgt, dass "irgendwas" mal sin n zwischen -irgendwas und +irgendwas liegt.


Bezug
                                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Sa 12.06.2010
Autor: Princess17

So weit hatte ich es doch auch schon hingeschrieben. Aber es fehlt trotzdem, wie davon auf den Grenzwert gefolgert wird.
Vielleicht so:

-1 [mm] \le [/mm] sin(n) [mm] \le [/mm] 1
[mm] \Rightarrow -\bruch{1}{n} \le \bruch{1}{n}sin(n) \le \bruch{1}{n} [/mm]
[mm] \pm \bruch{1}{n} \mapsto [/mm] 0 für n [mm] \mapsto \infty [/mm]
...
[mm] \limes_{n\rightarrow\infty} \bruch{1}{n}sin(n) [/mm] = 0

Aber bei ... fehlt doch noch ein Schritt zur Begründung, oder? Ich weiß nicht, was ich da hinschreiben muss.

Bezug
                                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Sa 12.06.2010
Autor: Gonozal_IX

Hiho,

>  Vielleicht so:
>  
> -1 [mm]\le[/mm] sin(n) [mm]\le[/mm] 1
>  [mm]\Rightarrow -\bruch{1}{n} \le \bruch{1}{n}sin(n) \le \bruch{1}{n}[/mm]

>

Bis hierhin: Prima.

Und jetzt einfach nur als Folgerung:

[mm]\Rightarrow \limes_{n\rightarrow\infty} -\bruch{1}{n} \le \limes_{n\rightarrow\infty}\bruch{1}{n}sin(n) \le \limes_{n\rightarrow\infty}\bruch{1}{n}[/mm]  

Und nun die beiden Grenzwerte die du kennst ausrechnen, dann steht da was?

MFG,
Gono.

Bezug
                                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Sa 12.06.2010
Autor: Princess17

...
[mm] \limes_{n\rightarrow\infty} -\bruch{1}{n} \le \limes_{n\rightarrow\infty} \bruch{1}{n}sin(n) \le \limes_{n\rightarrow\infty} \bruch{1}{n} [/mm]
0 [mm] \le \limes_{n\rightarrow\infty} \bruch{1}{n}sin(n) \le [/mm] 0
[mm] \limes_{n\rightarrow\infty} \bruch{1}{n}sin(n) [/mm] = 0

Vielen Dank :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]