matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Grenzwert
Grenzwert < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: kurze Frage
Status: (Frage) beantwortet Status 
Datum: 14:54 Mo 04.04.2005
Autor: Bastiane

Hallo ganz kurz!
Stimmt es, dass gilt:

[mm] \lim_{n\to\infty}x^{\bruch{1}{n}}=1? [/mm] bzw. sogar [mm] \lim_{n\to\infty}|xn|^{\bruch{1}{n}}=1? [/mm]

Wenn ja, sieht man das direkt bzw. weiß man das oder muss man das begründen?

Viele Grüße
Bastiane
[breakdance]


        
Bezug
Grenzwert: Stimmt!
Status: (Antwort) fertig Status 
Datum: 15:18 Mo 04.04.2005
Autor: unicon

hi Bastiane,

meiner Meinung nach stimmt das, weil der exponent [mm] \bruch{1}{n} [/mm] bei n [mm] \to \infty [/mm] gegen Null geht und dann gilt [mm] a^{0}=1 [/mm]

Bei deiner zweiten frage verhält es sich genauso, denn wenn der exponent Null ist, dann ist es egal was als Basis dort steht es wird immer 1.

wegen der frage ob man das Begründen muss oder nich bin ich mir nicht sicher aber ich denke mal nicht.


Greetzt unicon



Bezug
        
Bezug
Grenzwert: Stetigkeit
Status: (Antwort) fertig Status 
Datum: 15:41 Mo 04.04.2005
Autor: Loddar

Hallo Christiane!


Wegen der Stetigkeit der Exponentialfunktion gilt:
[mm]\limes_{n\to\infty}x^{\bruch{1}{n}} \ = \ x^{\limes_{n\to\infty} \bruch{1}{n}} \ = \ x^0 \ = \ 1[/mm]





[mm]\limes_{n\to\infty}|x*n|^{\bruch{1}{n}}[/mm]

[mm]= \ \limes_{n\to\infty}|x|^{\bruch{1}{n}} \ * \ \limes_{n\to\infty}|n|^{\bruch{1}{n}}[/mm]

[mm]= \ 1 \ * \ \limes_{n\to\infty}e^{\bruch{1}{n}*\ln(n)}[/mm]

[mm]= \ e^{\limes_{n\to\infty}\bruch{\ln(n)}{n}}[/mm]   [mm] $(\star)$ [/mm]

[mm]= \ e^0 \ = \ 1[/mm]


[mm] $(\star)$ $\limes_{n\to\infty}\bruch{\ln(n)}{n} [/mm] \ = \ 0$ wegen de l'Hospital!


Grüße
Loddar



Bezug
        
Bezug
Grenzwert: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Mo 04.04.2005
Autor: Bastiane

Hallo ihr Zwei!
Vielen Dank für die Antwort - jetzt kann ich ja beruhigt damit weiterrechnen. :-)

Viele Grüße
Bastiane
[sunny]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]