matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:34 Di 29.04.2008
Autor: Morgenroth

Aufgabe
a(n) (n Element N) = (1+2²+...+n²)/n³ mit Grenzwert a.
Gebe für [mm] \varepsilon [/mm] = 1/1000 ein n(0) an, sodass für alle n>= n(0) gilt:
[mm] |a(n)-a|<\varepsilon. [/mm]

1. Grenzwert berechnen:
a(n) = (n(n+1)(2n+1))/6 / n³ = ... = (2 + 3/n + 1/n²) / 6
[mm] \limes_{n\rightarrow\infty} [/mm] a(n) = 1/3

2. n(0) bestimmen:
|(2 + 3/n + 1/n²)/6 - 1/3| < 1/1000
|(3n+1)/n²| < 3/500
Ist das bis dahin korrket?

Ich hätte dann mögl. eine pq-Formel zu lösen, oder?

|-3/500 n² + 3n + 1| < 0

Gruß,
Max ;-)

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Di 29.04.2008
Autor: Zneques

Hallo,

Das sieht alles schon recht ordentlich aus.
Nur am Ergebnis gibts noch etwas zu meckern.

> |-3/500 n² + 3n + 1| < 0

Betrag von Irgendetwas ist kleiner als 0 ?
Das dürfte schwer werden. Demnach findest du kein [mm] n_0 \Rightarrow [/mm] Ungut !

Richtiger wäre dann doch :
[mm] -\frac{3}{500}n^2+|3n+1|<0 [/mm]

Warum ? Was macht man mit dem Betrag ?
Und : Ab welchem n gilt dies ?

Ciao.

Bezug
                
Bezug
Grenzwert: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:20 Mi 30.04.2008
Autor: Morgenroth

Alles klar, danke.

$ [mm] -\frac{3}{500}n^2+|3n+1|<0 [/mm] $

Da n ja eh Element N ist, kann man aber da doch sicher die Betragsstriche weglassen, oder?

Dann hätte ich durch (-3/500) geteilt:
n² - 500n - 500/3 <0

Das sieht dann nach pq-Formel aus, oder kann man diese für Ungleichungen nicht benutzen?

n1,2 < 250 +/- [mm] \wurzel{250² - 500/3} [/mm]
n1,2 < 250 +/- 250,3331114...

Dann  hätte ich:
n1 < 500,3331114...
n2 < -0,333111407

n2 könnte ich dann ausschließen, da n ja nicht negativ sein kann.
Aber was sagt mir das Ergebnis bei n1 jetzt genau?
Dass n0 500 beträgt? Oder ist das <-Zeichen falschrum und es muss > heißen, weil ich ja einmal beide Seiten durch (-1) geteilt habe.
Dann würde das schon mehr Sinn machen, und n0 wäre 501?


Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Mi 30.04.2008
Autor: schachuzipus

Hallo Morgenroth,

> Alles klar, danke.
>  
> [mm]-\frac{3}{500}n^2+|3n+1|<0[/mm]
>  
> Da n ja eh Element N ist, kann man aber da doch sicher die
> Betragsstriche weglassen, oder? [ok]
>  
> Dann hätte ich durch (-3/500) geteilt:
>  n² - 500n - 500/3 <0 [notok]

Wenn du eine Unngleichung mit was Negativem multiplizierst bzw. durch was Negatives dividierst, dreht sich das Ungleichheitszeichen um!!

Du bekommst also: [mm] $n^2-500n-\frac{500}{3} [/mm] \ [mm] \blue{>} [/mm] \ 0$

>  
> Das sieht dann nach pq-Formel aus, oder kann man diese für
> Ungleichungen nicht benutzen?
>  
> n1,2 < 250 +/- [mm]\wurzel{250² - 500/3}[/mm]
>  n1,2 < 250 +/-
> 250,3331114...
>  
> Dann  hätte ich:
>  n1 < 500,3331114...
>  n2 < -0,333111407
>  
> n2 könnte ich dann ausschließen, da n ja nicht negativ sein
> kann. [ok]
>  Aber was sagt mir das Ergebnis bei n1 jetzt genau?
>  Dass n0 500 beträgt? Oder ist das <-Zeichen falschrum und
> es muss > heißen, weil ich ja einmal beide Seiten durch
> (-1) geteilt habe. [ok]

ganz genau

$-4<-2$, aber dann $4>2$

>  Dann würde das schon mehr Sinn machen, und n0 wäre 501? [ok]

Jo, das würde ich auch meinen ;-)

>  


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]