matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Grenzwert berechnen
Status: (Frage) beantwortet Status 
Datum: 18:45 Fr 04.05.2007
Autor: clwoe

Aufgabe
Zeigen Sie:

[mm] \limes_{n\rightarrow\infty}\bruch{n}{\wurzel[n]{n!}}=e [/mm]

[mm] \limes_{n\rightarrow\infty}=(1+\bruch{1}{n})^{n}=e [/mm]

Ich bins schon wieder.

Lerne für eine Nachklausur morgen und das waren Übungsaufgaben aus einem Ferientutorium. Allerdings sind die glaub ich wesentlich schwieriger als die Aufgaben in der Klausur sein werden.

Ich habe jedenfalls keine Ahnung was man hier machen könnte.

Für die zweite Aufgabe habe ich einen Beweis im Skript, der erstreckt sich allerdings über eine ganze Seite. Ich kann ihn zwar nachvollziehen, jedoch selbst hinschreiben könnte ich es glaub ich nicht, ohne ihn wirklich zu lernen. Vielleicht gibt es ja noch eine andere Möglichkeit, die mir vielleicht jemand zeigen könnte.

Gruß,
clwoe


        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Fr 04.05.2007
Autor: Slartibartfast

Hallo,

Ich glaube, da muss man mit der Stirling-Formel ran
[]http://de.wikipedia.org/wiki/Stirling-Formel

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Fr 04.05.2007
Autor: Hund

Hallo,

da ihr wahrscheinlich die Stirlingsche Formel in der Vorlesung nicht hattet, kannst du folgende Formel zum Beweis verwenden:
[mm] (\bruch{n}{3})^{n}\len!\le(\bruch{n}{2})^{n}, [/mm] n muss größer oder gleich 6 sein, was du durch Induktion zeigen kannst. Um das andere zu Zeigen müsste ich wissen, wie ihr e definiert habt. Bei den üblichen Definitionen, kenne ich den Beweis auch nur sehr lang. Solche Aufgabe kommen aber garantiert nicht in der Klausur vor. Die Grenzwerte sind allerdings sinnvoll zu lernen, falls die in der Vorlesung vorkamen, weil oft Aufgaben vorkommen, in denen man angesprochene Grenzwerte kennen muss.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]